Alsqer - 1 year ago 265

R Question

is there any way to plot a graph like this in R and have the same 12 axes on it with thier name ?

here's a pic for the graph.

here's a piece of my data

`Date1 Time TravelTime`

1 2016-09-04 13:11 34

2 2016-09-04 13:12 34

3 2016-09-04 13:13 33

4 2016-09-04 13:14 33

5 2016-09-04 13:15 33

6 2016-09-04 13:16 43

7 2016-09-04 13:17 44

8 2016-09-04 13:18 44

9 2016-09-04 13:19 40

10 2016-09-04 13:20 39

here's the output from dput

`structure(list(Date1 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,`

1L, 1L, 1L), .Label = "2016-09-04", class = "factor"), Time = structure(1:10, .Label = c("13:11",

"13:12", "13:13", "13:14", "13:15", "13:16", "13:17", "13:18",

"13:19", "13:20"), class = "factor"), TravelTime = c(34L, 34L,

33L, 33L, 33L, 43L, 44L, 44L, 40L, 39L)), .Names = c("Date1",

"Time", "TravelTime"), row.names = c(NA, -10L), class = "data.frame")

here's my data for 5 days

Data1

here's another graph that shows the Time-Spiral ... May you please change your graph to spiral, not a circular ?

i got the graph from this link

here

Recommended for you: Get network issues from **WhatsUp Gold**. **Not end users.**

Answer Source

**Updated Answer**

I've updated the code to use the data you provided. The data are summarized to get mean travel time in 15-minute segments for each day.

First, we load and process the data:

```
dat = readxl::read_excel("Data1.xlsx")
# Convert Date1 and Time to POSIXct
dat$time = with(dat, as.POSIXct(paste(Date1, Time), tz="GMT"))
# Get hour from time
dat$hour = dat$hour = as.numeric(dat$time) %% (24*60*60) / 3600
# Get date from time
dat$day = as.Date(dat$time)
# Rename Travel Time and convert to numeric
names(dat)[grep("Travel",names(dat))] = "TravelTime"
dat$TravelTime = as.numeric(dat$TravelTime)
```

Now, summarize the data into 15-minute time-of-day bins with the mean travel time for each bin:

```
library(dplyr)
dat.smry = dat %>%
mutate(hour.group = cut(hour, breaks=seq(0,24,0.25), labels=seq(0,23.75,0.25), include.lowest=TRUE),
hour.group = as.numeric(as.character(hour.group))) %>%
group_by(day, hour.group) %>%
summarise(meanTT = mean(TravelTime))
```

Finally, we plot the data. Each 15-minute hour-of-day bin gets its own segment, and we use travel time for the color gradient.

```
ggplot(dat.smry, aes(x=as.numeric(hour.group), xend=as.numeric(hour.group) + 0.25,
y=day, yend=day, colour=meanTT)) +
geom_segment(size=6) +
scale_x_continuous(limits=c(0,24), breaks=0:23, minor_breaks=0:24,
labels=paste0(rep(c(12,1:11),2), rep(c("AM","PM"),each=12))) +
scale_y_date(limits=range(dat$day) + c(-3,0), breaks=seq(min(dat$day),max(dat$day),"1 day"),
date_labels="%b %e") +
scale_colour_gradient2(low="green", mid="yellow", high="red", midpoint=35) +
coord_polar() +
theme_bw(base_size=10) +
labs(x="Hour",y="Day",color="Mean Travel Time") +
theme(panel.grid.minor.x=element_line(colour="grey60", size=0.3))
```

**Original Answer**

I'm not sure what variable you want on the radial axis or whether you have a grouping variable that could be used for color, but hopefully this will get you started. I've created a fake data set that I hope is similar to your real data.

```
library(ggplot2)
# Fake data
set.seed(341)
dat = data.frame(date=sample(seq(as.POSIXct("2016-01-01"), as.POSIXct("2016-01-07"), length.out=100)),
TravelTime=sample(10:40, 100, replace=TRUE),
group=sample(LETTERS[1:4], 100, replace=TRUE))
# Get hour of day
dat$hour = as.numeric(dat$date) %% (24*60*60) / 3600
# Convert date to day on scale of 1 to N, where the first date in the data set is day 1
dat$day = as.numeric(as.Date(dat$date)) %% min(as.numeric(as.Date(dat$date))) + 1
ggplot(dat, aes(x=hour, xend=hour+TravelTime/60, y=day, yend=day, colour=group)) +
geom_segment(size=2.5) +
scale_x_continuous(limits=c(0,24), breaks=0:23, minor_breaks=0:24,
labels=paste0(rep(c(12,1:11),2), rep(c("AM","PM"),each=12))) +
scale_y_continuous(limits=c(-4,7), breaks=1:7) +
coord_polar() +
theme_bw() +
theme(axis.text.x=element_text(size=8))
```

Recommended from our users: **Dynamic Network Monitoring from WhatsUp Gold from IPSwitch**. ** Free Download**