I'm working with Python & Pandas. I would like to remove every column from my data frame where more than 50% of rows have the value 0 in that particular column.
Here's an example:
import pandas as pd
# defining a dataframe
data = [['Alex',10, 173, 0, 4000],['Bob',12, 0, 0, 4000], ['Clarke',13, 0, 0, 0]]
# naming the columns
df = pd.DataFrame(data,columns=['Name','Age', 'Height', 'Score', 'Income'])
# printing the dataframe
print(df)
# make a new dataframe and count the number of values = zero per column
zeroValues = df.eq(0).sum(axis=0)
zeroValues = zeroValues.to_frame()
# name the column
zeroValues.columns = ["# of zero values"]
# add a column that calculates the percentage of values = zero
zeroValues["zeroValues %"] = ((zeroValues["# of zero values"] * 100) /
len(df.index))
# print the result
print(zeroValues)
Use DataFrame.mean
for get percentage of 0
values first and then filter with loc
- need all values less or equal with 0.5
:
zeroValues = df.eq(0).mean()
print (zeroValues)
Name 0.000000
Age 0.000000
Height 0.666667
Score 1.000000
Income 0.333333
dtype: float64
print (zeroValues <= 0.5)
Name True
Age True
Height False
Score False
Income True
dtype: bool
df = df.loc[:, zeroValues <= 0.5]
print (df)
Name Age Income
0 Alex 10 4000
1 Bob 12 4000
2 Clarke 13 0
One row solution:
df = df.loc[:, df.eq(0).mean().le(.5)]
print (df)
Name Age Income
0 Alex 10 4000
1 Bob 12 4000
2 Clarke 13 0