Selah - 5 months ago 116
Python Question

# numpy corrcoef - compute correlation matrix while ignoring missing data

I am trying to compute a correlation matrix of several values. These values include some 'nan' values. I'm using numpy.corrcoef. For element(i,j) of the output correlation matrix I'd like to have the correlation calculated using all values that exist for both variable i and variable j.

This is what I have now:

``````In[20]: df_counties = pd.read_sql("SELECT Median_Age, Rpercent_2008, overall_LS, population_density FROM countyVotingSM2", db_eng)
In[21]: np.corrcoef(df_counties, rowvar = False)
Out[21]:
array([[ 1.        ,         nan,         nan, -0.10998411],
[        nan,         nan,         nan,         nan],
[        nan,         nan,         nan,         nan],
[-0.10998411,         nan,         nan,  1.        ]])
``````

Too many nan's :(

One of the main features of `pandas` is being `NaN` friendly. To calculate correlation matrix, simply call `df_counties.corr()`. Below is an example to demonstrate `df.corr()` is `NaN` tolerant whereas `np.corrcoef` is not.

``````import pandas as pd
import numpy as np

# data
# ==============================
np.random.seed(0)
df = pd.DataFrame(np.random.randn(100,5), columns=list('ABCDE'))
df[df < 0] = np.nan
df

A       B       C       D       E
0   1.7641  0.4002  0.9787  2.2409  1.8676
1      NaN  0.9501     NaN     NaN  0.4106
2   0.1440  1.4543  0.7610  0.1217  0.4439
3   0.3337  1.4941     NaN  0.3131     NaN
4      NaN  0.6536  0.8644     NaN  2.2698
5      NaN  0.0458     NaN  1.5328  1.4694
6   0.1549  0.3782     NaN     NaN     NaN
7   0.1563  1.2303  1.2024     NaN     NaN
8      NaN     NaN     NaN  1.9508     NaN
9      NaN     NaN  0.7775     NaN     NaN
..     ...     ...     ...     ...     ...
90     NaN  0.8202  0.4631  0.2791  0.3389
91  2.0210     NaN     NaN  0.1993     NaN
92     NaN     NaN     NaN  0.1813     NaN
93  2.4125     NaN     NaN     NaN  0.2515
94     NaN     NaN     NaN     NaN  1.7389
95  0.9944  1.3191     NaN  1.1286  0.4960
96  0.7714  1.0294     NaN     NaN  0.8626
97     NaN  1.5133  0.5531     NaN  0.2205
98     NaN     NaN  1.1003  1.2980  2.6962
99     NaN     NaN     NaN     NaN     NaN

[100 rows x 5 columns]

# calculations
# ================================
df.corr()

A       B       C       D       E
A  1.0000  0.2718  0.2678  0.2822  0.1016
B  0.2718  1.0000 -0.0692  0.1736 -0.1432
C  0.2678 -0.0692  1.0000 -0.3392  0.0012
D  0.2822  0.1736 -0.3392  1.0000  0.1562
E  0.1016 -0.1432  0.0012  0.1562  1.0000

np.corrcoef(df, rowvar=False)

array([[ nan,  nan,  nan,  nan,  nan],
[ nan,  nan,  nan,  nan,  nan],
[ nan,  nan,  nan,  nan,  nan],
[ nan,  nan,  nan,  nan,  nan],
[ nan,  nan,  nan,  nan,  nan]])
``````
Recommended from our users: Dynamic Network Monitoring from WhatsUp Gold from IPSwitch. Free Download