lefty - 1 year ago 365

C++ Question

In Tensorflow C++ I can load an image file into the graph using

`tensorflow::Node* file_reader = tensorflow::ops::ReadFile(tensorflow::ops::Const(IMAGE_FILE_NAME, b.opts()),b.opts().WithName(input_name));`

tensorflow::Node* image_reader = tensorflow::ops::DecodePng(file_reader, b.opts().WithAttr("channels", 3).WithName("png_reader"));

tensorflow::Node* float_caster = tensorflow::ops::Cast(image_reader, tensorflow::DT_FLOAT, b.opts().WithName("float_caster"));

tensorflow::Node* dims_expander = tensorflow::ops::ExpandDims(float_caster, tensorflow::ops::Const(0, b.opts()), b.opts());

tensorflow::Node* resized = tensorflow::ops::ResizeBilinear(dims_expander, tensorflow::ops::Const({input_height, input_width},b.opts().WithName("size")),b.opts());

For an embedded application I would like to instead pass an OpenCV Mat into this graph.

How would I convert the Mat to a tensor that could be used as input to tensorflow::ops::Cast or tensorflow::ops::ExpandDims?

Recommended for you: Get network issues from **WhatsUp Gold**. **Not end users.**

Answer Source

It's not directly from a CvMat, but you can see an example of how to initialize a Tensor from an in-memory array in the TensorFlow Android example: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/android/jni/tensorflow_jni.cc#L173

You would start off by creating a new tensorflow::Tensor object, with something like this (all code untested):

```
tensorflow::Tensor input_tensor(tensorflow::DT_FLOAT,
tensorflow::TensorShape({1, height, width, depth}));
```

This creates a Tensor object with float values, with a batch size of 1, and a size of `width`

x`height`

, and with `depth`

channels. For example a 128 wide by 64 high image with 3 channels would pass in a shape of `{1, 64, 128, 3}`

. The batch size is just used when you need to pass in multiple images in a single call, and for simple uses you can leave it as 1.

Then you would get the underlying array behind the tensor using a line like this:

`auto input_tensor_mapped = input_tensor.tensor<float, 4>();`

The `input_tensor_mapped`

object is an interface to the data in your newly-created tensor, and you can then copy your own data into it. Here I'm assuming you've set `source_data`

as a pointer to your source data, for example:

`const float* source_data = some_structure.imageData;`

You can then loop through your data and copy it over:

```
for (int y = 0; y < height; ++y) {
const float* source_row = source_data + (y * width * depth);
for (int x = 0; x < width; ++x) {
const float* source_pixel = source_row + (x * depth);
for (int c = 0; c < depth; ++c) {
const float* source_value = source_pixel + c;
input_tensor_mapped(0, y, x, c) = *source_value;
}
}
}
```

There are obvious opportunities to optimize this naive approach, and I don't have sample code on hand to show how to deal with the OpenCV side of getting the source data, but hopefully this is helpful to get you started.

Recommended from our users: **Dynamic Network Monitoring from WhatsUp Gold from IPSwitch**. ** Free Download**