pachamaltese pachamaltese - 1 year ago 74
R Question

Which is the best way to parallelize cosine distance?

My R session crashes after the timeout is exceeded when I try to compute the cosine distance with a large dataset (~600,000 lines)

For small datasets my code works and this is an example:

library(lsa) <- as.matrix(mtcars)

I've read some posts on this website to parallelize cosine function but no luck.

Does a very efficient method exist?

Do you suggest rccp like this post? Parallel cosine distance using clusterapply in R

If computing something like a correlation matrix is inefficient. What do you suggest?

Answer Source

Coding it in Rcpp might buy you enough that you don't need the extra hassle of parallelizing. Example below (but I don't know how it will do on your system/with a real-sized problem: a vector of length 1e8 (equivalent to a 10,000 by 10,000 matrix) takes 763Mb, so even storing the results for a problem 60^2 times larger (=2.75Tb if I've calculated correctly) might be difficult ...).

x <- as.matrix(mtcars)

Function from lsa:


Slightly stripped-down R code:

cosR <- function(x) {
      co <- array(0, c(ncol(x), ncol(x)))
      ## f <- colnames(x)
      ## dimnames(co) <- list(f, f)
      for (i in 2:ncol(x)) {
        for (j in 1:(i - 1)) {
            co[i,j] <- crossprod(x[,i], x[,j])/
                sqrt(crossprod(x[,i]) * crossprod(x[,j]))
    co <- co + t(co)
    diag(co) <- 1

Rcpp version, slightly modified from here:

            code="NumericMatrix cosCpp(NumericMatrix Xr) {
            int n = Xr.nrow(), k = Xr.ncol();
            arma::mat X(Xr.begin(), n, k, false); // reuses memory and avoids extra copy
            arma::mat Y = arma::trans(X) * X; // matrix product
            arma::mat res = Y / (arma::sqrt(arma::diagvec(Y)) * arma::trans(arma::sqrt(arma::diagvec(Y))));
            return Rcpp::wrap(res);

Test equality:


## Unit: nanoseconds
##       expr    min      lq       mean  median      uq      max neval cld
##  cosine(x) 460046 1181837 2069604.51 1530719 2528021  8757989   100   b
##    cosR(x) 542414 1096448 1915011.12 1331277 2321596 11740233   100   b
##  cosCpp(x)      7   12472   35827.76   17999   30556   644551   100  a 

The Rcpp version is about 1331277/17999 = 74 times faster, and might (?) get you around memory issues as well.

Recommended from our users: Dynamic Network Monitoring from WhatsUp Gold from IPSwitch. Free Download