Penn Penn - 6 months ago 17
Python Question

how to create a three-point arc in pygame

I need to draw an arc in pygame, through three points, however pygame's arc function doesn't seem to support this. I have researched three point arcs, both in and out of pygame, however cannot find anything that I understand and is useful.

I would ideally like a full code however any hints will be useful



Here are some hints, which will require a little mathematics to finish. If you need more help, show more of your work and ask.

Let's say you want to draw a circular arc from point a=(ax, ay) through point b=(bx, by) to point c=(cx, cy). You want to use the function

pygame.draw.arc(Surface, color, Rect, start_angle, stop_angle, width=1)

So you need to find Rect, the bounding rectangle (which will be a square) of the circle, and the start and stop angles. Here is an outline.

  1. Use your point coordinates to calculate the center of the relevant circle, giving you point u=(ux, uy). If that calculation raises a divide-by-zero or overflow error, the points are (nearly) in a straight line, so just draw a line segment from point a to point c and you are done.
  2. Calculate the distance from point u to point a (or b or c, it doesn't matter). That will be the radius of the desired circle.
  3. Use point u and the radius to calculate the parameters of the bounding rectangle Rect. The rectangle will actually be a square, and point u will be its center.
  4. Use a little trigonometry to calculate the direction angle from point u to point a: this (almost) will be start_angle. Be careful, since Cartesian coordinates have increasing y go up, while in pygame increasing y goes down. Also calculate the direction angle from point u to point c: this (almost) will be stop_angle. Then calculate the direction angle from point u to point b.
  5. Examine those three direction angles. If necessary, swap the start and stop angles and/or add 2*pi to the stop angle to ensure that the start angle is less than the stop angle and that the arc goes through point b.

You now have Rect, start_angle, and stop_angle. This outline ignores some subtle issues such as rounding to integers, but I'll leave those to you.