So I have a generic compose combinator.
Recall that the composition of two functions—f and g-- is h(x) = f(g(x))
def inc(x: Double) = x + 1
def double(x: Double) = 2 * x
def compose[A,B,C](f: B => C, g: A => B, x: A): C = f(g(x))
//TEST
println(compose(double, inc, 2.0))
//OUTPUT
// 6.0
def selfIter[T](f: T=>T, n: Int) = f composed with itself n times.
def selfIter[T](f: T, n: Int): T = {
if(n == 0) f
else f + selfIter(f, n-1)
}
//TEST
println(selfIter(compose(double, inc, 2.0), 2))
The easiest way to solve this kind of problems is to use the combinators provided by Scala. Also you should first compose the function you want to use and then apply the input
def compose[A,B,C](f: B => C, g: A => B): A => C = g.andThen(f)
def selfIter[T](f: T=>T, n: Int): T => T = Function.chain(List.fill(n)(f))
println(selfIter(compose(double, inc), 2)(2.0))
If compose signature could not be changed then
def compose[A,B,C](f: B => C, g: A => B, x: A): C = f(g(x))
def selfIter[T](f: T=>T, n: Int): T => T = Function.chain(List.fill(n)(f))
println(selfIter[Double](compose(double, inc, _), 2)(2.0))
But it makes much more sense the first solution