Adam Robinsson Adam Robinsson - 2 months ago 33
R Question

Rolling mean (moving average) by group/id with dplyr

I have a longitudinal follow-up of blood pressure recordings.

The value at a certain point is less predictive than is the moving average (rolling mean), which is why I'd like to calculate it. The data looks like

test <- read.table(header=TRUE, text = "
ID AGE YEAR_VISIT BLOOD_PRESSURE TREATMENT
1 20 2000 NA 3
1 21 2001 129 2
1 22 2002 145 3
1 22 2002 130 2
2 23 2003 NA NA
2 30 2010 150 2
2 31 2011 110 3
4 50 2005 140 3
4 50 2005 130 3
4 50 2005 NA 3
4 51 2006 312 2
5 27 2010 140 4
5 28 2011 170 4
5 29 2012 160 NA
7 40 2007 120 NA
")


I'd like to calculate a new variable, called BLOOD_PRESSURE_UPDATED. This variable should be the moving average for BLOOD_PRESSURE and have the following characteristics:


  • A moving average is the current value plus the previous value divided by two.

  • For the first observation, the BLOOD_PRESSURE_UPDATED is just the current BLOOD_PRESSURE. If that is
    missing, BLOOD_PRESSURE_UPDATED should be the overall mean.

  • Missing values should be filled in with nearest previous value.



I've tried the following:

test2 <- test %>%
group_by(ID) %>%
arrange(ID, YEAR_VISIT) %>%
mutate(BLOOD_PRESSURE_UPDATED = rollmean(x=BLOOD_PRESSURE, 2)) %>%
ungroup()


I have also tried rollaply and rollmeanr without succeeding.

I'd appreciate some assistance.

Answer

If you are not committed to to dplyr this should work:

get.mav <- function(bp,n=2){
  require(zoo)
  if(is.na(bp[1])) bp[1] <- mean(bp,na.rm=TRUE)
  bp <- na.locf(bp,na.rm=FALSE)
  if(length(bp)<n) return(bp)
  c(bp[1:(n-1)],rollapply(bp,width=n,mean,align="right"))  
}
test <- with(test,test[order(ID,YEAR_VISIT),])

test$BLOOD_PRESSURE_UPDATED <- 
  unlist(aggregate(BLOOD_PRESSURE~ID,test,get.mav,na.action=NULL,n=2)$BLOOD_PRESSURE)
test
#    ID AGE YEAR_VISIT BLOOD_PRESSURE TREATMENT BLOOD_PRESSURE_UPDATED
# 1   1  20       2000             NA         3               134.6667
# 2   1  21       2001            129         2               131.8333
# 3   1  22       2002            145         3               137.0000
# 4   1  22       2002            130         2               137.5000
# 5   2  23       2003             NA        NA               130.0000
# 6   2  30       2010            150         2               140.0000
# 7   2  31       2011            110         3               130.0000
# ...

This works for moving averages > 2 as well.

And here's a data.table solution, which is likely to be much faster if your dataset is large.

library(data.table)
setDT(test)     # converts test to a data.table in place
setkey(test,ID,YEAR_VISIT)
test[,BLOOD_PRESSURE_UPDATED:=as.numeric(get.mav(BLOOD_PRESSURE,2)),by=ID]
test
#    ID AGE YEAR_VISIT BLOOD_PRESSURE TREATMENT BLOOD_PRESSURE_UPDATED
#  1:  1  20       2000             NA         3               134.6667
#  2:  1  21       2001            129         2               131.8333
#  3:  1  22       2002            145         3               137.0000
#  4:  1  22       2002            130         2               137.5000
#  5:  2  23       2003             NA        NA               130.0000
#  6:  2  30       2010            150         2               140.0000
#  7:  2  31       2011            110         3               130.0000
# ...