ds_user - 2 months ago 3x
R Question

# Minimise objective function using R

Can somebody help me in solving this to multivariate function parameters optimization in R, I have a data set like this. This is just a subset of data, dimension of the full dataset is

`n type * m regions * 12 months`
.

``````Month   region  type physics maths allsub
Jan     r1       1      4     5      9
Feb     r1       1      3     8      11
Mar     r1       1      5     4      9
Apr     r1       1      6     7      13
May     r1       1      4     4      8
Jun     r1       1      8     9      17
Jul     r1       1      4     3      7
Aug     r1       1      5     4      9
Sep     r1       1      3     8      11
Oct     r1       1      9     2      11
Nov     r1       1      4     7      11
Dec     r1       1      7     3      10
Jan     r1       2      5     8      13
Feb     r1       2      4     9      13
Mar     r1       2      8     3      11
Apr     r1       2      5     6      11
May     r1       2      6     4      10
Jun     r1       2      7     6      13
Jul     r1       2      3     7      10
Aug     r1       2      4     8      12
Sep     r1       2      4     4      8
Oct     r1       2      8     1      9
Nov     r1       2      2     3      5
Dec     r1       2      1     6      7

...     ...        ..  ...    ...   ....
...     ...        ..  ...    ...   ....
``````

I have one more dataset which has maximum number of physics and maths students in each region. And my objective function is this,
`100*(physics) + 65*(maths) >= 0`
. I want to minimize this function and my constraints are
1. sum of physics and maths should always be equal to allsub for that region and month.
2. total number of physics students in a region every month should be less than maximum number of physics students available in that region.
3. total number of maths students in a region every month should be less than maximum number of maths students available in that region.

I am trying to use R. The whole idea is to find the right number of physics and maths students in each region/type/month minimizing the objective function and meeting the constraints. Can someone help me with this?

EDIT : As requested in the comments.
Here is the total capacity dataset. dataframe name = totalcap

``````   Month region physicscap mathscap
1    Jan   r1    9            13
2    Feb   r1    7            17
3    Mar   r1    13           7
4    Apr   r1    11           13
5    May   r1    10           8
6    Jun   r1    15           15
7    Jul   r1    7            10
8    Aug   r1    9            12
9    Sep   r1    7            12
10   Oct   r1    17           3
11   Nov   r1    6            10
12   Dec   r1    8            9
``````

Here is the script I have tried,

``````library(dplyr)
library(MASS)
library(Rsolnp)

Month <- c('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec')
region <- c('r1')
physicscap <- c(5,5,8,6,7,9,5,6,4,10,5,8)
mathscap <- c(5,8,5,8,5,10,5,5,8,5,8,5)

totalcap <- data.frame(Month,region,physicscap,mathscap)
#Constraints for the optimization.
constraints2 <- function(efforts){
# constraints are:
# 1. effort - allsub <= 0 in each region/month
#
efforts\$effort_calculated <- efforts\$physics + efforts+maths
reqeff <- summarise(group_by(efforts,region,Month),monthlyeffreg=sum(effort_calculated))
reqeffallsub <- summarise(group_by(efforts,region,Month),allsubsum=sum(allsub))
cons1 <- mutate(inner_join(reqeff,reqeffallsub,by=c('region'='region','Month'='Month'))
,diff=monthlyeffreg-allsubsum)
constout <- cons1\$diff

# 2. sum(physics) - total physics available <= 0 in each region/month
#
phyreqeff <- summarise(group_by(efforts,region,Month),physicseff=sum(physics))
cons2 <- mutate(inner_join(totalcap,phyreqeff,by=c('region'='region','Month'='Month')),
diff=physicseff-physicscap)
constout <- c(constout,cons2\$diff)

# 3. sum(maths) - total maths available <= 0 in each region/month
#
matreqeff <- summarise(group_by(efforts,region,Month),mathseff=sum(maths))
cons3 <- mutate(inner_join(totalcap,matreqeff,by=c('region'='region','Month'='Month')),
diff=mathseff-mathscap)
constout <- c(constout,cons3\$diff)
constout
}

#Objective function to minimize the cost function.
objectivefunc <- function(efforts){
nb_physics <- sum(efforts\$physics)
nb_maths <- sum(efforts\$maths)
objective <- (100*nb_physics + 55*nb_maths - 110)
objective
}

Out2 <- solnp(pars = efforts,fun=objectivefunc,ineqfun=constraints2,ineqLB = rep(-100000,36),
ineqUB = rep(0,36), LB = rep(0,length(u)))
``````

Here is the error I am getting,

``````Error in p0/vscale[(neq + 2):(nc + np + 1)] :
non-numeric argument to binary operator
``````

Hope this clears the questions in comments. I tried my level best here, hope someone help me in solving this.

Here is an approach with `lpSolveAPI`:

``````dat <- data.frame(
mon=rep(c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"),2),
region="r1",
type=c(rep("1", 12), rep("2", 12)),
physicsmin=1,
mathsmin=1,
allsub=c(9, 11, 9, 13, 8, 17, 7, 9, 11, 11, 11, 10, 13,13,11,11,10,13,10,12,8,9,5,7),
stringsAsFactors=FALSE
)
dat
capdat <- data.frame(
mon=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"),
region="r1",
physicscap=c(9,7,13,11,10,15,7,9,7,17,6,8),
mathscap=c(13,17,7,13,8,15,10,12,12,3,10,9),
stringsAsFactors=FALSE
)
capdat
``````

Now for each month/region combination an optimization problem is to be solved. That is why we wrap the calculation in a function:

``````library(lpSolveAPI)
ntypes <- length(unique(dat[,"type"])) # number of types
typemap <- setNames(seq.int(ntypes), unique(dat[,"type"])) # map typename to 1,...,ntypes

solve_one <- function(subdat, capdat) {

# create object
lprec <- make.lp(0, ncol=2*ntypes) # for each type, two decision variables

# By convention, we assume that the first ntypes variables are physics for type 1, ..., ntypes
# and the second ntypes variables are maths

set.objfn(lprec, obj=c(rep(100, ntypes), rep(65, ntypes)))
set.type(lprec, columns=seq.int(2*ntypes), type="integer") # no reals

idx <- which(capdat[,"mon"]==subdat[1,"mon"] & capdat[,"region"]==subdat[1,"region"]) # lookup the right cap
add.constraint(lprec, rep(1, ntypes), type="<=", rhs=capdat[idx,"physicscap"], indices=seq.int(ntypes))
add.constraint(lprec, rep(1, ntypes), type="<=", rhs=capdat[idx,"mathscap"], indices=seq.int(ntypes+1, 2*ntypes))

# add allsub equality constraints and minimum constraints
for (typ in subdat[,"type"]) {
add.constraint(lprec, c(1,1), type="=", rhs=subdat[typemap[typ], "allsub"], indices=c(typemap[typ], ntypes+typemap[typ]))
}

# solution data.frame
ans <- subdat[, c("mon", "region", "type")]

# solve
if(solve(lprec)==0) {
sol <- get.variables(lprec)
for (i in seq.int(nrow(subdat))) {
ans[i, "physics"] <- sol[typemap[subdat[i,"type"]]]
ans[i, "maths"] <- sol[typemap[subdat[i,"type"]]+ntypes]
}
} else ans[,c("physics", "maths")] <- NA # no solution found

return(ans)
}
``````

Now we apply the function to each subdataset which includes all types for each month/region combination. We use a split/apply/combine approach here:

``````sp <- split(dat, list(dat[,"mon"], dat[,"region"]))
results <- lapply(sp, solve_one, capdat=capdat)
results <- do.call(rbind, results)
rownames(results) <- NULL
results
``````

The code does not assume that for each month/region combination all types are present (some types may be omitted), however the solution will be wrong if there are several entries present for the same month/region/type combination. (the code would need to be adapted for this).

Source (Stackoverflow)