Milhouse - 1 year ago 67
R Question

# Tying new variable value to all responses by individual in long data

I'm using a longitudinal survey in long format, and I'm trying to create a dummy variable for if an individual has NOT got a college degree by the age of 25. My data looks something like this:

`````` ID   CYRB   VAR      VALUE
1    1983   DEG98    1
1    1983   DEG00    1
1    1983   DEG02    1
1    1983   DEG04    0
2    1979   DEG08    0
2    1979   DEG00    0
2    1979   DEG02    1
2    1979   DEG04    1
3    1978   DEG98    NA
3    1978   DEG00    NA
3    1978   DEG02    NA
3    1978   DEG04    0
``````

As I've tried to illustrate, there are quite a few missing data points for survey responses in the relevant years. But clearly if the respondent responds no in later years it can be inferred that they didn't have a degree when they were <25 either.

Trying to be as general as possible, how can I create a new variable that depends on all the variable values of just one individual, i.e. for ID = 1, 2, 3 etc.?

Sorry if I'm not clear!

Edit:

Sorry my fault, the data used to be in wide format and the variables denote whether the respondent has a college degree in 1998, 2000, 2002 etc. (with value denoting the response 1 == TRUE, 0 == FALSE), CYRB is indeed year of birth, the table edited for the expected output of my desired dummy variable would be:

`````` ID   CYRB   VAR      VALUE   DUMMY
1    1983   DEG98    0       0
1    1983   DEG00    0       0
1    1983   DEG02    0       0
1    1983   DEG04    1       0
2    1979   DEG08    0       0
2    1979   DEG00    0       0
2    1979   DEG02    1       0
2    1979   DEG04    1       0
3    1978   DEG98    NA      1
3    1978   DEG00    NA      1
3    1978   DEG02    NA      1
3    1978   DEG04    0       1
``````

i.e. if the respondent replies in any survey from the age of 25 onwards that he/she does not have a college degree the dummy takes the value of 1.

Hope this is a bit clearer.

Assuming you meant "DEG98" in the first row for ID 2:

First, recover the respondent's age:

``````d\$survey_year <- as.numeric(sapply(d\$VAR, substring, 4, 5))
d\$survey_year <- ifelse(d\$survey_year<20, 2000+d\$survey_year, 1900+d\$survey_year)
d\$age <- d\$survey_year - d\$CYRB
``````

Use the `any()` function to test your criteria:

``````degree <- data.frame(DUMMY=c(
by(d, d\$ID, function(x) any(x\$VALUE==0 & x\$age>25))))
degree\$ID <- rownames(degree)
``````

Combine the dummy values with the original dataframe:

``````out <- merge(d[,c("ID", "CYRB", "VAR", "VALUE")], degree, all.x=TRUE)
``````

Output:

``````> out
ID CYRB   VAR VALUE DUMMY
1   1 1983 DEG98     0 FALSE
2   1 1983 DEG00     0 FALSE
3   1 1983 DEG02     0 FALSE
4   1 1983 DEG04     1 FALSE
5   2 1979 DEG98     0 FALSE
6   2 1979 DEG00     0 FALSE
7   2 1979 DEG02     1 FALSE
8   2 1979 DEG04     1 FALSE
9   3 1978 DEG98    NA  TRUE
10  3 1978 DEG00    NA  TRUE
11  3 1978 DEG02    NA  TRUE
12  3 1978 DEG04     0  TRUE
``````

EDIT: A more parsimonious solution using the `dplyr` package. First, write a `getYear()` function to convert `DEGxx` to the actual year:

``````getYear <- function(x) {
x <- as.numeric(substring(x, 4, 5))
ifelse(x<16, 2000+x, 1900+x)
}
``````

Then transform the dataset:

``````library(dplyr)
d %>% group_by(ID) %>%
mutate(survey_year=getYear(VAR),
age=survey_year - CYRB,
DUMMY=any(VALUE==0 & age>25))
``````

Output:

``````Source: local data frame [12 x 7]
Groups: ID [3]

ID  CYRB    VAR VALUE DUMMY survey_year   age
(int) (int) (fctr) (int) (lgl)       (dbl) (dbl)
1      1  1983  DEG98     0 FALSE        1998    15
2      1  1983  DEG00     0 FALSE        2000    17
3      1  1983  DEG02     0 FALSE        2002    19
4      1  1983  DEG04     1 FALSE        2004    21
5      2  1979  DEG98     0 FALSE        1998    19
6      2  1979  DEG00     0 FALSE        2000    21
7      2  1979  DEG02     1 FALSE        2002    23
8      2  1979  DEG04     1 FALSE        2004    25
9      3  1978  DEG98    NA  TRUE        1998    20
10     3  1978  DEG00    NA  TRUE        2000    22
11     3  1978  DEG02    NA  TRUE        2002    24
12     3  1978  DEG04     0  TRUE        2004    26
``````
Recommended from our users: Dynamic Network Monitoring from WhatsUp Gold from IPSwitch. Free Download