nelsonauner - 1 year ago 94

R Question

I have the following time series data observed daily:

`series <- c(10, 25, 8, 27, 18, 21, 12, 9, 31, 18, 8, 30, 14, 13, 10, 14,`

14, 14, 6, 9, 22, 21, 22, 8, 7, 6, 22, 21, 36, 16, 2, 13, 23,

40, 12, 27, 18, 10, 11, 37, 44, 30, 40, 25, 13, 11, 58, 56, 46,

39, 28, 27, 19, 20, 97, 90, 70, 73, 30, 22, 97, 34)

and want to fit it using

`tbats`

`forecasts`

`library(forecast)`

x.msts = msts(series,seasonal.periods = 7)

model <- tbats(x.msts)

# shows "--- loading profile ---"

Examing/plotting the model with

`str`

`4.9e+17`

And, plotting the forecast going forward, we observe massive swings:

`> forecast(model)$mean`

Multi-Seasonal Time Series:

Start: 9 7

Seasonal Periods: 7

Data:

[1] 1.483789e+44 -1.399297e+42 -2.566455e+44 -1.374316e+43 -1.527758e+38

[6] 2.036194e+42 5.639596e+42 8.231600e+40 -2.578859e+41 -1.355840e+43

Are these estimates the "correct" solution to the TBATS model fitting procedure, or is there a bug in the

`forecast`

This is my first post on CV so apologies if this should be on SO!

I have filed a bug report on github

Also some people have noticed that I'm not using multiple seasonality factors, so I want to show here that the bug is still an issue:

`x2.msts <- msts(series,seasonal.periods = c(7,30))`

model_x2_1 <- tbats(x2.msts) # high variance

model_x2_2 <- tbats( series, seasonal.periods = c(7,30) ) # also high variance

Recommended for you: Get network issues from **WhatsUp Gold**. **Not end users.**

Answer Source

This is perhaps the same problem as described here, so the reason *is* presumably a bug in the forecast package. I'm not sure if the following alternative will give you the desired result, but you can leave `series`

as is and put `seasonal.periods=7`

in the call of `tbats`

:

```
library(forecast)
series <- c(10, 25, 8, 27, 18, 21, 12, 9, 31, 18, 8, 30, 14, 13, 10, 14,
14, 14, 6, 9, 22, 21, 22, 8, 7, 6, 22, 21, 36, 16, 2, 13, 23,
40, 12, 27, 18, 10, 11, 37, 44, 30, 40, 25, 13, 11, 58, 56, 46,
39, 28, 27, 19, 20, 97, 90, 70, 73, 30, 22, 97, 34)
x.msts <- msts(series,seasonal.periods = 7)
model_1 <- tbats(x.msts)
model_2 <- tbats( series, seasonal.periods = 7 )
```

The variance of `model_2`

is much better than that of `model_1`

:

```
> str(model_1)
List of 19
$ lambda : num 0.21
$ alpha : num 0.374
$ beta : NULL
$ damping.parameter: NULL
$ gamma.values : NULL
$ ar.coefficients : num [1:2] 1.296 -0.911
$ ma.coefficients : num [1:2] -1.62 0.98
$ likelihood : num 549
$ optim.return.code: int 0
$ variance : num 4.9e+17
$ AIC : num 571
$ parameters :List of 2
..$ vect : num [1:6] 0.21 0.374 1.296 -0.911 -1.615 ...
..$ control:List of 6
.. ..$ use.beta : logi FALSE
.. ..$ use.box.cox : logi TRUE
.. ..$ use.damping : logi FALSE
.. ..$ length.gamma: num 0
.. ..$ p : int 2
.. ..$ q : int 2
$ seed.states : num [1:5, 1] 4.16 0 0 0 0
$ fitted.values : Time-Series [1:62] from 1 to 9.71: 19.97 19.28 4.53 21.83 56.15 ...
..- attr(*, "msts")= num 7
$ errors : Time-Series [1:62] from 1 to 9.71: -1.206 0.496 0.828 0.415 -2.354 ...
..- attr(*, "msts")= num 7
$ x : num [1:5, 1:62] 3.71 -1.21 0 -1.21 0 ...
$ seasonal.periods : NULL
$ y : Time-Series [1:62] from 1 to 9.71: 10 25 8 27 18 21 12 9 31 18 ...
..- attr(*, "msts")= num 7
$ call : language tbats(y = x.msts)
- attr(*, "class")= chr "bats"
>
```

.

```
> str(model_2)
List of 23
$ lambda : num 0.198
$ alpha : num 0.198
$ beta : NULL
$ damping.parameter: NULL
$ gamma.one.values : num -0.0157
$ gamma.two.values : num 0.00991
$ ar.coefficients : NULL
$ ma.coefficients : NULL
$ likelihood : num 553
$ optim.return.code: int 0
$ variance : num 0.969
$ AIC : num 571
$ parameters :List of 2
..$ vect : num [1:4] 0.19842 0.19782 -0.0157 0.00991
..$ control:List of 6
.. ..$ use.beta : logi FALSE
.. ..$ use.box.cox : logi TRUE
.. ..$ use.damping : logi FALSE
.. ..$ length.gamma: int 2
.. ..$ p : num 0
.. ..$ q : num 0
$ seed.states : num [1:5, 1] 4.1851 0.3176 0.0103 -0.5806 0.4447
$ fitted.values : Time-Series [1:62] from 1 to 62: 25.1 20 11.1 10.2 24.3 ...
$ errors : Time-Series [1:62] from 1 to 62: -1.594 0.41 -0.507 1.697 -0.552 ...
$ x : num [1:5, 1:62] 3.87 -0.231 0.456 -0.626 -0.125 ...
$ seasonal.periods : num 7
$ k.vector : int 2
$ y : Time-Series [1:62] from 1 to 62: 10 25 8 27 18 21 12 9 31 18 ...
$ p : num 0
$ q : num 0
$ call : language tbats(y = series, seasonal.periods = 7)
- attr(*, "class")= chr [1:2] "tbats" "bats"
>
```

Recommended from our users: **Dynamic Network Monitoring from WhatsUp Gold from IPSwitch**. ** Free Download**