Wade Bratz Wade Bratz -4 years ago 413
Python Question

Calculate rolling correlation with pandas

I have a list of 10 stocks differentiated by PERMNO. I would like to group those stocks by PERMNO and calculate the rolling correlation between the stock return (RET) for each PERMNO with the market return (vwretd). The code I am trying is below.

CRSP['rollingcorr'] = CRSP.groupby('PERMNO').rolling_corr(CRSP['RET'],CRSP['vwretd'],10)


The error I am getting is below.

---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-32-c18e1ce01302> in <module>()
1 #CRSP['rollingcorr'] = CRSP.rolling_corr(CRSP['vwretd'],CRSP['RET'],120)
----> 2 CRSP['rollingmean'] = CRSP.groupby('PERMNO').rolling_corr(CRSP['vwretd'],10)
3 CRSP.head(20)

C:\Users\rebortz\Anaconda\lib\site-packages\pandas\core\groupby.pyc in __getattr__(self, attr)
296
297 raise AttributeError("%r object has no attribute %r" %
--> 298 (type(self).__name__, attr))
299
300 def __getitem__(self, key):

AttributeError: 'DataFrameGroupBy' object has no attribute 'rolling_corr'


please help!

Thanks

Answer Source

Use pandas.rolling_corr, not DataFrame.rolling_corr. Besides, groupby returns a generator. See below code.

Code:

import pandas as pd

df = pd.read_csv("color.csv")
df_gen = df.copy().groupby("Color")

for key, value in df_gen:
    print "key: {}".format(key)
    print value.rolling_corr(value["Value1"],value["Value2"], 3)

Output:

key: Blue
1          NaN
3          NaN
6     0.931673
8     0.865066
10    0.089304
12   -0.998656
15   -0.971373
17   -0.667316
dtype: float64
key: Red
0          NaN
2          NaN
5    -0.911357
9    -0.152221
11   -0.971153
14    0.438697
18   -0.550727
dtype: float64
key: Yellow
4          NaN
7          NaN
13   -0.040330
16    0.879371
dtype: float64

You can change the loop part to the following to view the original dataframe post-grouping with a new column as well.

for key, value in df_gen:
    value["ROLL_CORR"] = pd.rolling_corr(value["Value1"],value["Value2"], 3)
    print value

Output:

   Color    Value1    Value2  ROLL_CORR
1   Blue  0.951227  0.514999        NaN
3   Blue  0.649112  0.513052        NaN
6   Blue  0.148165  0.342205   0.931673
8   Blue  0.626883  0.421530   0.865066
10  Blue  0.286738  0.583811   0.089304
12  Blue  0.966779  0.227340  -0.998656
15  Blue  0.065493  0.887640  -0.971373
17  Blue  0.757932  0.900103  -0.667316
key: Red
   Color    Value1    Value2  ROLL_CORR
0    Red  0.201435  0.981871        NaN
2    Red  0.522955  0.357239        NaN
5    Red  0.806326  0.310039  -0.911357
9    Red  0.656126  0.678047  -0.152221
11   Red  0.435898  0.908388  -0.971153
14   Red  0.116419  0.555821   0.438697
18   Red  0.793102  0.168033  -0.550727
key: Yellow
     Color    Value1    Value2  ROLL_CORR
4   Yellow  0.099474  0.143293        NaN
7   Yellow  0.073128  0.749297        NaN
13  Yellow  0.006777  0.318383  -0.040330
16  Yellow  0.345647  0.993382   0.879371

If you want to join them all together after processing (this might be confusing to others, by the way), just use concat after processing groups.

import pandas as pd

df = pd.read_csv("color.csv")
df_gen = df.copy().groupby("Color")

dfs = [] # Container for dataframes.

for key, value in df_gen:
    value["ROLL_CORR"] = pd.rolling_corr(value["Value1"],value["Value2"], 3)
    print value
    dfs.append(value)

df_final = pd.concat(dfs)
print df_final

Output:

     Color    Value1    Value2  ROLL_CORR
1     Blue  0.951227  0.514999        NaN
3     Blue  0.649112  0.513052        NaN
6     Blue  0.148165  0.342205   0.931673
8     Blue  0.626883  0.421530   0.865066
10    Blue  0.286738  0.583811   0.089304
12    Blue  0.966779  0.227340  -0.998656
15    Blue  0.065493  0.887640  -0.971373
17    Blue  0.757932  0.900103  -0.667316
0      Red  0.201435  0.981871        NaN
2      Red  0.522955  0.357239        NaN
5      Red  0.806326  0.310039  -0.911357
9      Red  0.656126  0.678047  -0.152221
11     Red  0.435898  0.908388  -0.971153
14     Red  0.116419  0.555821   0.438697
18     Red  0.793102  0.168033  -0.550727
4   Yellow  0.099474  0.143293        NaN
7   Yellow  0.073128  0.749297        NaN
13  Yellow  0.006777  0.318383  -0.040330
16  Yellow  0.345647  0.993382   0.879371

Hope this helps.

Recommended from our users: Dynamic Network Monitoring from WhatsUp Gold from IPSwitch. Free Download