Boris Boris - 2 months ago 14
R Question

Summarizing data in R

I have a data on countries and want to summarize it and create a table.

> head(data)
country year score members
A 1989 0 7
A 1990 0 7
A 1991 0 7
A 1992 0 7
A 1993 0 7
A 1994 0 7


The table should show the relationship between country "score" and the number of "members" – put differently, I want to see how many states with score 0,1 or 2 have "members"(ranging from 1 to 7).

I want to set it like this:

score members==1 members==2 members==3 members==4 members==5 members==6 members==7
0 1 0
1 2 0
2 0 1 and so on..


To do this I run the following:

library(dplyr)
table <- data %>%
group_by(score) %>%
summarise(
m1 = sum(members==1, na.rm=TRUE),
m2 = sum(members==2, na.rm=TRUE),
m3 = sum(members==3, na.rm=TRUE),
m4 = sum(members==4, na.rm=TRUE),
m5 = sum(members==5, na.rm=TRUE),
m6 = sum(members==6, na.rm=TRUE),
m7 = sum(members==7, na.rm=TRUE)

)


This gives:

score m1 m2 m3 m4 m5 m6 m7
0 0 2 0 0 0 3 30
1 15 3 11 11 3 18 3
2 3 0 2 2 0 6 9
.
.


I need a little help here..as you see it has calculated the total number of observations and not per country – I am sure that this is relatively easy to correct but it seems (right now, at least) quite complicated to me.

So how do I summarize this data so that I have the total number of countries for each members-level?

Reproducible sample :

> dput(data)
structure(list(country = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L), .Label = c("A", "B", "C", "D", "E", "F"), class = "factor"),
year = c(1989L, 1990L, 1991L, 1992L, 1993L, 1994L, 1995L,
1996L, 1997L, 1998L, 1999L, 2000L, 2001L, 2002L, 2003L, 2004L,
2005L, 2006L, 2007L, 2008L, 2010L, 1989L, 1990L, 1991L, 1992L,
1993L, 1994L, 1995L, 1996L, 1997L, 1998L, 1999L, 2000L, 2001L,
2002L, 2003L, 2004L, 2005L, 2006L, 2007L, 2008L, 2009L, 2010L,
2011L, 1989L, 1991L, 1993L, 1994L, 1995L, 1996L, 1997L, 1999L,
2000L, 2001L, 2002L, 2003L, 2004L, 2005L, 2006L, 2007L, 2008L,
2010L, 1989L, 1990L, 1991L, 1992L, 1993L, 1994L, 1995L, 1996L,
1997L, 1998L, 1999L, 2000L, 2001L, 2002L, 2003L, 2004L, 2005L,
2006L, 2007L, 2008L, 2009L, 2010L, 2011L, 1991L, 1992L, 1993L,
1994L, 1995L, 1997L, 1998L, 1999L, 2000L, 2001L, 2002L, 2003L,
2004L, 2005L, 2006L, 2007L, 2008L, 2010L, 1991L, 1992L, 1993L,
1994L, 1995L, 1997L, 1998L, 1999L, 2000L, 2001L, 2002L, 2003L,
2004L, 2005L, 2006L, 2007L, 2008L, 2010L), score = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L,
1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), members = c(7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L)), .Names = c("country", "year", "score",
"members"), class = "data.frame", row.names = c(NA, -121L))

Answer

As the OP is using dplyr methods, we can do this by grouping with 'score', 'members' to get the number of elements (n()), and then spread (from tidyr) to reshape it to 'wide' format.

library(dplyr)
library(tidyr)
data %>%
    group_by(score, members) %>%
    summarise(n = n()) %>%
    mutate(members = paste0("m", members)) %>%
    spread(members, n, fill = 0)
#  score    m1    m2    m3    m4    m5    m6    m7
#  <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1     0     0     2     0     0     0     3    30
#2     1    15     3    11    11     3    18     3
#3     2     3     0     2     2     0     6     9

If we need to also get the counts by 'country', just add 'country' in the group_by

data %>%
    group_by(country, score, members) %>%
    summarise(n = n()) %>%
    mutate(members = paste0("m", members)) %>%
    spread(members, n, fill = 0)

If the expected output is the one showed in the other posts, an option using data.table would be to convert the 'data.frame' to 'data.table' (setDT(data), and dcast from 'long' to 'wide' specifying the fun.aggregate as uniqueN of the 'value.var' variable i.e. 'country' where uniqueN returns the length of unique elements in the 'country' column. The fill=0 specifies to occupy 0 for those combinations that are not available. By default, it returns as NA.

library(data.table)
dcast(setDT(data), score~members, value.var= 'country', fun.aggregate = uniqueN, fill = 0)   
#   score 1 2 3 4 5 6 7
#1:     0 0 1 0 0 0 1 2
#2:     1 1 1 2 2 1 3 2
#3:     2 1 0 1 2 0 1 1