AFG AFG - 1 year ago 74
MySQL Question

How do I do a fuzzy match of company names in MYSQL with PHP for auto-complete?

My users will import through cut and paste a large string that will contain company names.

I have an existing and growing MYSQL database of companies names, each with a unique company_id.

I want to be able to parse through the string and assign to each of the user-inputed company names a fuzzy match.

Right now, just doing a straight-up string match, is also slow. ** Will Soundex indexing be faster? How can I give the user some options as they are typing? **

For example, someone writes:

Microsoft -> Microsoft
Bare Essentials -> Bare Escentuals
Polycom, Inc. -> Polycom

I have found the following threads that seem similar to this question, but the poster has not approved and I'm not sure if their use-case is applicable:

How to find best fuzzy match for a string in a large string database

Matching inexact company names in Java

Answer Source

You can start with using SOUNDEX(), this will probably do for what you need (I picture an auto-suggestion box of already-existing alternatives for what the user is typing).

The drawbacks of SOUNDEX() are:

  • it's inability to differentiate longer strings. Only the first few characters are taken into account, longer strings that diverge at the end generate the same SOUNDEX value
  • the fact the the first letter must be the same or you won't find a match easily. SQL Server has DIFFERENCE() function to tell you how much two SOUNDEX values are apart, but I think MySQL has nothing of that kind built in.
  • for MySQL, at least according to the docs, SOUNDEX is broken for unicode input


SELECT SOUNDEX('Microsift Corporation')
SELECT SOUNDEX('Microsift Subsidary')

/* all of these return 'M262' */

For more advanced needs, I think you need to look at the Levenshtein distance (also called "edit distance") of two strings and work with a threshold. This is the more complex (=slower) solution, but it allows for greater flexibility.

Main drawback is, that you need both strings to calculate the distance between them. With SOUNDEX you can store a pre-calculated SOUNDEX in your table and compare/sort/group/filter on that. With the Levenshtein distance, you might find that the difference between "Microsoft" and "Nzcrosoft" is only 2, but it will take a lot more time to come to that result.

In any case, an example Levenshtein distance function for MySQL can be found at Levenshtein Distance as a MySQL Stored Function (Feb. 10th, 2007).

Recommended from our users: Dynamic Network Monitoring from WhatsUp Gold from IPSwitch. Free Download