Vijay Vijay - 2 months ago 14
C++ Question

why do we actually have virtual functions?

I am new to C++.

Could anybody tell me the difference between method overriding and virtual function concepts in c++.

The functionality of virtual functions can be over-ridden in its derived classes.
Redefining a function in a derived class is called function overriding.

why do we actually have virtual functions?

Answer

ABSTRACT

In this paper, we discuss virtual functions in C++. Part zero explains how virtual functions are declared and overridden. Part one attempts (and perhaps fails) to explain how virtual functions are implemented. Part two is a sample program that uses the example classes defined in parts zero and one. Part three is the classic animal example given in every virtual function - polymorphism tutorial.

PART ZERO

A method of a class is said to be virtual if and only if its declared to be so.

class my_base
{
public:
            void non_virtual_test() { cout << 4 << endl; } // non-virtual
    virtual void virtual_test()     { cout << 5 << endl; } // virtual
};

(Of course, I am assuming the programmer did not previously do anything like #define virtual.)

A class that redeclares and re-implements a non-virtual method of one of its bases is said to overload that method. A class that redeclares and re-implements a virtual method of one of its bases is said to override that method.

class my_derived : public my_base
{
public:
    void non_virtual_test() { cout << 6 << endl; } // overloaded
    void virtual_test()     { cout << 7 << endl; } // overriden
};

PART ONE

When the compiler detects a class has virtual methods, it automatically adds a virtual method table (also known as vtable) to the class' memory layout. The result is similar to what would have been generated from compiling this code:

class my_base
{
//<vtable>
// The vtable is actually a bunch of member function pointers
protected:
    void (my_base::*virtual_test_ptr)();
//</vtable>

// The actual implementation of the virtual function
// is hidden from the rest of the program.
private:
    void virtual_test_impl() { cout << 5 << endl; }

// Initializing the real_virtual_test pointer in the vtable.
public:
    my_base() : virtual_test_ptr(&my_base::virtual_test_impl) {}

public:
    void non_virtual_test() { cout << 4 << endl; }
    // The interface of the virtual function is a wrapper
    // around the member function pointer.
    inline void virtual_test() { *virtual_test_ptr(); }
};

When the compiler detects a class has overridden a virtual method, it replaces its associated entry in the vtable. The result is similar to what would have been generated from compiling this code:

class my_derived : public my_base
{
// The actual implementation of the virtual function
// is hidden from the rest of the program.
private:
    void virtual_test_impl() { cout << 7 << endl; }

// Initializing the real_virtual_test pointer in the vtable.
public:
    my_derived() : virtual_test_ptr(&my_derived::virtual_test_impl) {}

public:
    void non_virtual_test() { cout << 6 << endl; }
};

PART TWO

Now that it's clear that virtual functions are implemented using vtables, which are nothing but a bunch of function pointers, it should be clear what this code does:

#include <iostream>

using namespace std;

class my_base
{
    public:
            void non_virtual_test() { cout << 4 << endl; }
    virtual void virtual_test()     { cout << 5 << endl; }
};

class my_derived : public my_base
{
public:
    void non_virtual_test() { cout << 6 << endl; }
    void virtual_test()     { cout << 7 << endl; }
}

int main()
{
    my_base* base_obj = new my_derived();

    // This outputs 4, since my_base::non_virtual_test() gets called,
    // not my_derived::non_virtual_test().
    base_obj->non_virtual_test();

    // This outputs 7, since the vtable pointer points to
    // my_derived::virtual_test(), not to my_base::virtual_test().
    base_obj->virtual_test();

    // We shall not forget
    // there was an object that was pointed by base_obj
    // who happily lived in the heap
    // until we killed it.
    delete base_obj;

    return 0;
}

PART THREE

Since no virtual function example is complete without an example with animals...

#include <iostream>

using namespace std;

class animal
{
public:
    virtual void say_something()
    { cout << "I don't know what to say." << endl
           << "Let's assume I can growl." << endl; }

    /* A more sophisticated version would use pure virtual functions:
     *
     * virtual void say_something() = 0;
     */
};

class dog : public animal
{
public:
    void say_something() { cout << "Barf, barf..." << endl; }
};

class cat : public animal
{
public:
    void say_something() { cout << "Meow, meow..." << endl; }
};

int main()
{
    animal *a1 = new dog();
    animal *a2 = new cat();
    a1->say_something();
    a2->say_something();
}
Comments