elm - 9 months ago 33

Scala Question

Let this coordinates class with the Euclidean distance,

`case class coord(x: Double, y: Double) {`

def dist(c: coord) = Math.sqrt( Math.pow(x-c.x, 2) + Math.pow(y-c.y, 2) )

}

and let a grid of coordinates, for instance

`val grid = (1 to 25).map {_ => coord(Math.random*5, Math.random*5) }`

Then for any given coordinate

`val x = coord(Math.random*5, Math.random*5)`

the nearest points to

`x`

`val nearest = grid.sortWith( (p,q) => p.dist(x) < q.dist(x) )`

so the first three closest are

`nearest.take(3)`

Is there a way to make these calculations more time efficient especially for the case of a grid with one million points ?

Answer

I'm not sure if this is helpful (or even stupid), but I thought of this:

You use a sort-function to sort ALL elements in the grid and then pick the first `k`

elements. If you consider a sorting algorithm like recursive merge-sort, you have something like this:

- Split collection in half
- Recurse on both halves
- Merge both sorted halves

Maybe you could optimize such a function for your needs. The merging part normally merges all elements from both halves, but you are only interested in the first `k`

that result from the merging. So you could only merge until you have `k`

elements and ignore the rest.

So in the worst-case, where `k >= n`

(`n`

is the size of the grid) you would still only have the complexity of merge-sort. `O(n log n)`

To be honest I'm not able to determine the complexity of this solution relative to `k`

. (too tired for that at the moment)

Here is an example implementation of that solution (it's definitely not optimal and not generalized):

```
def minK(seq: IndexedSeq[coord], x: coord, k: Int) = {
val dist = (c: coord) => c.dist(x)
def sort(seq: IndexedSeq[coord]): IndexedSeq[coord] = seq.size match {
case 0 | 1 => seq
case size => {
val (left, right) = seq.splitAt(size / 2)
merge(sort(left), sort(right))
}
}
def merge(left: IndexedSeq[coord], right: IndexedSeq[coord]) = {
val leftF = left.lift
val rightF = right.lift
val builder = IndexedSeq.newBuilder[coord]
@tailrec
def loop(leftIndex: Int = 0, rightIndex: Int = 0): Unit = {
if (leftIndex + rightIndex < k) {
(leftF(leftIndex), rightF(rightIndex)) match {
case (Some(leftCoord), Some(rightCoord)) => {
if (dist(leftCoord) < dist(rightCoord)) {
builder += leftCoord
loop(leftIndex + 1, rightIndex)
} else {
builder += rightCoord
loop(leftIndex, rightIndex + 1)
}
}
case (Some(leftCoord), None) => {
builder += leftCoord
loop(leftIndex + 1, rightIndex)
}
case (None, Some(rightCoord)) => {
builder += rightCoord
loop(leftIndex, rightIndex + 1)
}
case _ =>
}
}
}
loop()
builder.result
}
sort(seq)
}
```

Source (Stackoverflow)