Kendall Weihe Kendall Weihe - 3 months ago 74
Python Question

Tensorflow reshaping a tensor

I'm trying to use

tf.nn.sparse_softmax_cross_entropy_with_logits
and I have followed the answer by user Olivier Moindrot [here][1] but I'm getting a dimension error

I'm building a segmentation network, so the input image is 200x200 and the output image is 200x200. The classification is binary, so foreground and background.

After I build the CNN
pred = conv_net(x, weights, biases, keep_prob)


pred
looks like this
<tf.Tensor 'Add_1:0' shape=(?, 40000) dtype=float32>


The CNN has a couple of conv layers followed by a fully connected layer. The fully connected layer is 40000 because it is 200x200 flattened.

According to the above link, I reshape
pred
like so...

(side note: I also tried packing
tf.pack()
two
pred
's -- like above -- together, but I thought that was wrong)

pred = tf.reshape(pred, [-1, 200, 200, 2])


...so that there are 2 classifications. Continuing the above link...

temp_pred = tf.reshape(pred, [-1,2])
temp_y = tf.reshape(y, [-1])
cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(temp_pred, temp_y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)


I have the following placeholders and batch data...

x = tf.placeholder(tf.float32, [None, 200, 200])
y = tf.placeholder(tf.int64, [None, 200, 200])
(Pdb) batch_x.shape
(10, 200, 200)
(Pdb) batch_y.shape
(10, 200, 200)


When I run a training session, I get the following dimension error:

tensorflow.python.framework.errors.InvalidArgumentError: logits first
dimension must match labels size. logits shape=[3200000,2] labels
shape=[400000]


My full code looks like this:

import tensorflow as tf
import pdb
import numpy as np

# Import MINST data
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)


# Parameters
learning_rate = 0.001
training_iters = 200000
batch_size = 10
display_step = 1

# Network Parameters
n_input = 200 # MNIST data input (img shape: 28*28)
n_classes = 2 # MNIST total classes (0-9 digits)
n_output = 40000
#n_input = 200

dropout = 0.75 # Dropout, probability to keep units

# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input, n_input])
y = tf.placeholder(tf.int64, [None, n_input, n_input])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)


# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)

def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')


# Create model
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 200, 200, 1])

# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
# conv1 = tf.nn.local_response_normalization(conv1)
# conv1 = maxpool2d(conv1, k=2)

# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
# conv2 = tf.nn.local_response_normalization(conv2)
# conv2 = maxpool2d(conv2, k=2)

# Convolution Layer
conv3 = conv2d(conv2, weights['wc3'], biases['bc3'])
# # Max Pooling (down-sampling)
# conv3 = tf.nn.local_response_normalization(conv3)
# conv3 = maxpool2d(conv3, k=2)

# return conv3

# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)

return tf.add(tf.matmul(fc1, weights['out']), biases['out'])

# Output, class prediction
# output = []
# for i in xrange(2):
# # output.append(tf.nn.softmax(tf.add(tf.matmul(fc1, weights['out']), biases['out'])))
# output.append((tf.add(tf.matmul(fc1, weights['out']), biases['out'])))
#
# return output

# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# 5x5 conv, 32 inputs, 64 outputs
'wc3': tf.Variable(tf.random_normal([5, 5, 64, 128])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([50*50*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_output]))
}

biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bc3': tf.Variable(tf.random_normal([128])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_output]))
}

# Construct model
pred = conv_net(x, weights, biases, keep_prob)
pdb.set_trace()
# pred = tf.pack(tf.transpose(pred,[1,2,0]))
pred = tf.reshape(pred, [-1, n_input, n_input, 2])
temp_pred = tf.reshape(pred, [-1,2])
temp_y = tf.reshape(y, [-1])
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(temp_pred, temp_y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
# correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
temp_pred2 = tf.reshape(pred, [-1,n_input,n_input])
correct_pred = tf.equal(tf.cast(y,tf.float32),tf.sub(temp_pred2,tf.cast(y,tf.float32)))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.initialize_all_variables()

# Launch the graph
with tf.Session() as sess:
sess.run(init)
summ = tf.train.SummaryWriter('/tmp/logdir/', sess.graph_def)
step = 1
from tensorflow.contrib.learn.python.learn.datasets.scroll import scroll_data
data = scroll_data.read_data('/home/kendall/Desktop/')
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = data.train.next_batch(batch_size)
# Run optimization op (backprop)
batch_x = batch_x.reshape((batch_size, n_input, n_input))
batch_y = batch_y.reshape((batch_size, n_input, n_input))
batch_y = np.int64(batch_y)
# y = tf.reshape(y, [-1,n_input,n_input])
pdb.set_trace()
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
pdb.set_trace()
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x, y: batch_y, keep_prob: 1.})
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc)
step += 1
print "Optimization Finished!"

# Calculate accuracy for 256 mnist test images
print "Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: data.test.images[:256],
y: data.test.labels[:256],
keep_prob: 1.})



[1]: http://stackoverflow.com/questions/35317029/how-to-implement-pixel-wise-classification-for-scene-labeling-in-tensorflow/37294185?noredirect=1#comment63253577_37294185

Answer

Let's forget about softmax and use a simpler tf.nn.sigmoid_cross_entropy_with_logits here:

  • with sigmoid, you only need one prediction per pixel
    • if pred[pixel] > 0.5, you predict 1
    • if pred[pixel] < 0.5, you predict 0
  • the shape of prediction and target should then be [batch_size, 40000]
pred = conv_net(x, weights, biases, keep_prob)  # shape [batch_size, 40000]
flattened_y = tf.reshape(y, [-1, 40000])  # shape [batch_size, 40000]

loss = tf.nn.sigmoid_cross_entropy_with_logits(pred, flattened_y)