SteakOverCooked SteakOverCooked - 4 years ago 177
Java Question

O(n^2) isn't fast enough in solving this. any faster approaches?

I've been trying to solve this problem on ACM Timus

http://acm.timus.ru/problem.aspx?space=1&num=1932

My first approach is O(n^2) which surely isn't fast enough to pass all tests. The below O(n^2) code gives TL on test 10.

import java.util.*;
import java.io.*;

public class testtest
{
public static void main(String[] args) throws IOException
{
BufferedReader rr = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(rr.readLine());
String[] p = new String[n];
for (int i = 0; i < n; i ++)
{
p[i] = rr.readLine();
}
int[] diff = new int[]{0, 0, 0, 0};
for (int i = 0; i < n - 1; i ++)
{
for (int j = i + 1; j < n; j ++)
{
int ans = (p[i].charAt(0) == p[j].charAt(0) ? 0 : 1) +
(p[i].charAt(1) == p[j].charAt(1) ? 0 : 1) +
(p[i].charAt(2) == p[j].charAt(2) ? 0 : 1) +
(p[i].charAt(3) == p[j].charAt(3) ? 0 : 1);
diff[ans - 1] ++;
}
}
System.out.print(diff[0] + " " + diff[1] + " " + diff[2] + " " + diff[3]);
}
}


any idea to make this approach faster? I've noticed that only a limited set of characters are allowed in input ('0' .. '9', 'a' .. 'f') so we can create arrays (memory limitation is enough) to do fast checks if characters have been entered before.

Thanks... I don't need actual implementation, just quick idea/thoughts would be great.
EDIT: Thanks for great ideas. I've tried improvements on O(n^2) using bit-logics, but still time limit exceeded. The pascal code is below.

program Project2;

{$APPTYPE CONSOLE}

var
i, j, n, k, bits: integer;
arr: array[1..65536] of integer;
diff: array[1..4] of integer;
a, b, c, d: char;

function g(c: char): integer; inline;
begin
if ((c >= '0') and (c <= '9')) then
begin
Result := Ord(c) - 48;
end
else
begin
Result := Ord(c) - 87;
end;
end;

begin
Readln(n);
for i := 1 to n do
begin
Read(a); Read(b); Read(c); Readln(d);
arr[i] := g(a) * 16 * 16 * 16 + g(b) * 16 * 16 + g(c) * 16 + g(d);
for j := 1 to i - 1 do
begin
bits := arr[i] xor arr[j];
k := ((bits or (bits shr 1) or (bits shr 2) or (bits shr 3)) and $1111) mod 15;
Inc(diff[k]);
end;
end;
Write(diff[1], ' ', diff[2], ' ', diff[3], ' ', diff[4]);
{$IFNDEF ONLINE_JUDGE}
Readln;
{$ENDIF}
end.


So I guess, I've to try other better suggestions..

EDIT: I have tried Daniel's algorithm and it is very promising, maybe there is a mistake in the code below, It keeps getting Wrong Answer on Test 10... could anybody take a look? Many thanks...

import java.util.*;
import java.io.*;

public class testtest
{
private static int g(char ch)
{
if ((ch >= '0') && (ch <= '9'))
{
return (int)ch - 48;
}
return (int)ch - 87;
}

public static void main(String[] args) throws IOException
{
BufferedReader rr = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(rr.readLine());
int[] p = new int[n];
int[] all = new int[65536];
int[][] miss = new int[4][4096];
int[] g12 = new int[256];
int[] g13 = new int[256];
int[] g14 = new int[256];
int[] g23 = new int[256];
int[] g24 = new int[256];
int[] g34 = new int[256];
int[][] gg = new int[4][16];
int same3, same2, same1, same0, same4;
for (int i = 0; i < n; i ++)
{
String s = rr.readLine();
int x = g(s.charAt(0)) * 4096 + g(s.charAt(1)) * 256 + g(s.charAt(2)) * 16 + g(s.charAt(3));
p[i] = x;
all[x] ++;
miss[0][x >> 4] ++;
miss[1][(x & 0x000F) | ((x & 0xFF00) >> 4)] ++;
miss[2][(x & 0x00FF) | ((x & 0xF000) >> 4)] ++;
miss[3][x & 0x0FFF] ++;
g12[x >> 8] ++;
g13[((x & 0x00F0) >> 4) | ((x & 0xF000) >> 8)] ++;
g14[(x & 0x000F) | ((x & 0xF000) >> 8)] ++;
g23[(x & 0x0FF0) >> 4] ++;
g24[(x & 0x000F) | ((x & 0x0F00) >> 4)] ++;
g34[x & 0x00FF] ++;
gg[0][x >> 12] ++;
gg[1][(x & 0xF00) >> 8] ++;
gg[2][(x & 0xF0) >> 4] ++;
gg[3][x & 0xF] ++;
}

same4 = 0;
for (int i = 0; i < 65536; i ++)
{
same4 += (all[i] - 1) * (all[i]) / 2;
}

same3 = 0;
for (int i = 0; i < 4096; i ++)
{
same3 += (miss[0][i] - 1) * (miss[0][i]) / 2;
same3 += (miss[1][i] - 1) * (miss[1][i]) / 2;
same3 += (miss[2][i] - 1) * (miss[2][i]) / 2;
same3 += (miss[3][i] - 1) * (miss[3][i]) / 2;
}

same2 = 0;
for (int i = 0; i < 256; i ++)
{
same2 += (g12[i] - 1) * g12[i] / 2;
same2 += (g13[i] - 1) * g13[i] / 2;
same2 += (g14[i] - 1) * g14[i] / 2;
same2 += (g23[i] - 1) * g23[i] / 2;
same2 += (g24[i] - 1) * g24[i] / 2;
same2 += (g34[i] - 1) * g34[i] / 2;
}

same1 = 0;
for (int i = 0; i < 16; i ++)
{
same1 += (gg[0][i] - 1) * gg[0][i] / 2;
same1 += (gg[1][i] - 1) * gg[1][i] / 2;
same1 += (gg[2][i] - 1) * gg[2][i] / 2;
same1 += (gg[3][i] - 1) * gg[3][i] / 2;
}

same3 -= 4 * same4;
same2 -= 6 * same4 + 3 * same3;
same1 -= 4 * same4 + 3 * same3 + 2 * same2;
same0 = (int)((long)(n * (n - 1) / 2) - same4 - same3 - same2 - same1);
System.out.print(same3 + " " + same2 + " " + same1 + " " + same0);
}
}


EDIT
Finally got AC... thanks Daniel for such great algorithm!

Answer Source

For small n, a brute-force O(n²) algorithm checking each pair is faster, of course, so one would want to find a good cut-off point for switching algorithms. Without measuring, I'd expect a value between 200 and 3000 due to not-even-back-of-envelope considerations.

Convert the pirate ID to an int by parsing it as a hexadecimal number. Store the IDs in

int[] pirates = new int[n];

First, count the number of pairs of pirates with identical IDs (this step can be omitted here, since there are none by the problem statement).

int[] allFour = new int[65536];
for(int i = 0; i < n; ++i) {
    allFour[pirate[i]] += 1;
}
int fourIdentical = 0;
for(int i = 0; i < 65536; ++i) {
    fourIdentical += allFour[i]*(allFour[i] - 1) / 2;
}

Next, count the pairs of pirates with three identical nibbles in their ID,

int oneTwoThree(int p) {
    return p >> 4;
}
int oneTwoFour(int p) {
    return (p & 0x000F) | ((p & 0xFF00) >> 4);
}
int oneThreeFour(int p) {
    return (p & 0x00FF) | ((p & 0xF000) >> 4);
}
int twoThreeFour(int p) {
    return p & 0x0FFF;
}

int[] noFour  = new int[4096];
int[] noThree = new int[4096];
int[] noTwo   = new int[4096];
int[] noOne   = new int[4096];

for(int i = 0; i < n; ++i) {
    noFour[oneTwoThree(pirate[i])] += 1;
    noThree[oneTwoFour(pirate[i])] += 1;
    noTwo[oneThreeFour(pirate[i])] += 1;
    noOne[twoThreeFour(pirate[i])] += 1;
}

int threeIdentical = 0;
for(int i = 0; i < 4096; ++i) {
    threeIdentical += noFour[i]*(noFour[i]-1) / 2;
}
for(int i = 0; i < 4096; ++i) {
    threeIdentical += noThree[i]*(noThree[i]-1) / 2;
}
for(int i = 0; i < 4096; ++i) {
    threeIdentical += noTwo[i]*(noTwo[i]-1) / 2;
}
for(int i = 0; i < 4096; ++i) {
    threeIdentical += noOne[i]*(noOne[i]-1) / 2;
}

But, every pair of pirates with four identical nibbles has been counted 4 choose 3 = 4 times here, for each of the possible selections of three nibbles, so we need to subtract that (well, not for the problem, but in principle):

threeIdentical -= 4*fourIdentical;

Then, count the pairs of pirates with two identical nibbles in their ID:

int oneTwo(int p) {
    return p >> 8;
}
int oneThree(int p) {
    return ((p & 0x00F0) >> 4) | ((p & 0xF000) >> 8);
}
int oneFour(int p) {
    return (p & 0x000F) | ((p & 0xF000) >> 8);
}
int twoThree(int p) {
    return (p & 0x0FF0) >> 4;
}
int twoFour(int p) {
    return (p & 0x000F) | ((p & 0x0F00) >> 4);
}
int threeFour(int p) {
    return p & 0x00FF;
}

allocate six arrays of 256 ints and count the number of pirates with the corresponding nibbles in places a and b, like

int twoIdentical = 0;
int[] firstTwo = new int[256];
for(int i = 0; i < n; ++i) {
    firstTwo[oneTwo(pirate[i])] += 1;
}
for(int i = 0; i < 256; ++i) {
    twoIdentical += firstTwo[i]*(firstTwo[i] - 1) / 2;
}
// analogous for the other five possible choices of two nibbles

But, the pairs with four identical nibbles have been counted 4 choose 2 = 6 times here, and the pairs with three identical nibbles have been counted 3 choose 2 = 3 times, so we need to subtract

twoIdentical -= 6*fourIdentical + 3*threeIdentical;

Next, the number of pairs with one identical nibble. I trust you can guess what four functions and arrays are needed. Then we will have counted the pairs with four identical nibbles 4 choose 1 = 4 times, the ones with three identical nibbles 3 choose 1 = 3 times, and the pairs with two identical nibbles 2 choose 1 = 2 times, so

oneIdentical -= 4*fourIdentical + 3*threeIdentical + 2*twoIdentical;

Finally, the number of pairs with no identical nibbles is

int noneIdentical = (int)((long)n*(n-1) / 2) - oneIdentical - twoIdentical - threeIdentical - fourIdentical;

(the cast to long to avoid overflow of n*(n-1)).

Recommended from our users: Dynamic Network Monitoring from WhatsUp Gold from IPSwitch. Free Download