Bakuriu - 1 year ago 200

Python Question

I'm trying to multiply two polynomials using the

`numpy.convolve`

I thought that this would be really easy, but I found out that it does not always return the correct product.

The implementation of multiplication is quite simple:

`def __mul__(self, other):`

new = ModPolynomial(self._mod_r, self._mod_n)

try:

new_coefs = np.convolve(self._coefs, other._coefs)

new_coefs %= self._mod_n # coefficients in Z/nZ

new._coefs = new_coefs.tolist()

new._degree = self._finddegree(new._coefs)

except AttributeError:

new._coefs = [(c * other) % self._mod_n for c in self._coefs]

new._degree = self._finddegree(new._coefs)

new._mod() #the polynomial mod x^r-1

return new

An example that gives a wrong result:

`>>> N = 5915587277`

>>> r = 1091

>>> pol = polynomials.ModPolynomial(r,N)

>>> pol += 1

>>> r_minus_1 = (pol**(r-1)).coefficients

>>> # (x+1)^r = (x+1)^(r-1) * (x+1) = (x+1)^(r-1) * x + (x+1)^(r-1) * 1

... shifted = [r_minus_1[-1]] + list(r_minus_1[:-1]) #(x+1)^(r-1) * x mod x^r-1

>>> res = [(a+b)%N for a,b in zip(shifted, r_minus_1)]

>>> tuple(res) == tuple((pol**r).coefficients)

False

The exponentiation is probably not a problem, since I use exactly the same algorithm with an other polynomial implementation that gives the correct result. And by "exactly the same algorithm" I mean that the polynomial class that uses

`numpy.convolve`

`__mul__`

`_mod()`

`_mod()`

`_mod()`

An other example in which this fail:

`>>> pol = polynomials.ModPolynomial(r, N) #r,N same as before`

>>> pol += 1

>>> (pol**96).coefficients

(1, 96, 4560, 142880, 3321960, 61124064, 927048304, 88017926, 2458096246, 1029657217, 4817106694, 4856395617, 384842111, 2941717277, 5186464497, 5873440931, 526082533, 39852453, 1160839201, 1963430115, 3122515485, 3694777161, 1571327669, 5827174319, 2249616721, 501768628, 5713942687, 1107927924, 3954439741, 1346794697, 4091850467, 2576431255, 94278252, 5838836826, 3146740571, 1898930862, 4578131646, 1668290724, 2073150016, 2424971880, 1386950302, 1658296694, 5652662386, 1467437114, 2496056685, 1276577534, 4774523858, 5138784090, 4607975862, 5138784090, 4774523858, 1276577534, 2496056685, 1467437114, 5652662386, 1658296694, 1386950302, 2424971880, 2073150016, 1668290724, 4578131646, 1898930862, 3146740571, 5838836826, 94278252, 2576431255, 4091850467, 1346794697, 3954439741, 1107927924, 5713942687, 501768628, 2249616721, 5827174319, 1571327669, 3694777161, 3122515485, 1963430115, 1160839201, 39852453, 526082533, 5873440931, 5186464497, 2941717277, 384842111, 4856395617, 4817106694, 1029657217, 2458096246, 88017926, 927048304, 61124064, 3321960, 142880, 4560, 96, 1)

#the correct result[taken from wolframalpha]:

(1, 96, 4560, 142880, 3321960, 61124064, 927048304, 88017926, 2458096246, 1029657217, 4817106694, 4856395617, 384842111, 2941717277, 5186464497, 5873440931, 526082533, 39852453, 1160839201L, 1963430115L, 3122515485L, 3694777161L, 1571327669L, 5827174319L, 1209974072L, 5377713256L, 4674300038L, 68285275L, 2914797092L, 307152048L, 3052207818L, 1536788606L, 4970222880L, 4799194177L, 2107097922L, 859288213L, 4578131646L, 1668290724L, 1033507367L, 1385329231L, 347307653L, 618654045L, 4613019737L, 427794465L, 1456414036L, 236934885L, 3734881209L, 4099141441L, 3568333213L, 4099141441L, 3734881209L, 236934885L, 1456414036L, 427794465L, 4613019737L, 618654045L, 347307653L, 1385329231L, 1033507367L, 1668290724L, 4578131646L, 859288213L, 2107097922L, 4799194177L, 4970222880L, 1536788606L, 3052207818L, 307152048L, 2914797092L, 68285275L, 4674300038L, 5377713256L, 1209974072L, 5827174319L, 1571327669L, 3694777161L, 3122515485L, 1963430115L, 1160839201L, 39852453, 526082533, 5873440931, 5186464497, 2941717277, 384842111, 4856395617, 4817106694, 1029657217, 2458096246, 88017926, 927048304, 61124064, 3321960, 142880, 4560, 96, 1)

The wrong results only appeard with "big numbers", and also the exponent should be "big"[I couldn't find an example with exponent < 96].

I have no clue of why this is happening. I'm using

`numpy.convolve`

`numpy.convolve`

Later I'll try to do some more debugging, trying to understand where and when exactly things get wrong.

Recommended for you: Get network issues from **WhatsUp Gold**. **Not end users.**

Answer Source

NumPy is a library that implements fast operation on arrays of *fixed-size numeric data types*. It does not implement arbitrary precision arithmetic. So what you are seeing here is integer overflow: NumPy is representing your coefficients as 64-bit integers and when these are large enough, they overflow in `numpy.convolve`

.

```
>>> import numpy
>>> a = numpy.convolve([1,1], [1,1])
>>> type(a[0])
<type 'numpy.int64'>
```

If you need arithmetic on arbitrary-precision integers, you need to implement your own convolution so that it can use Python's arbitrary-precision integers. For example,

```
def convolve(a, b):
"""
Generate the discrete, linear convolution of two one-dimensional sequences.
"""
return [sum(a[j] * b[i - j] for j in range(i + 1)
if j < len(a) and i - j < len(b))
for i in range(len(a) + len(b) - 1)]
>>> a = [1,1]
>>> for i in range(95): a = convolve(a, [1,1])
...
>>> from math import factorial as f
>>> all(a[i] == f(96) / f(i) / f(96 - i) for i in range(97))
True
```

Recommended from our users: **Dynamic Network Monitoring from WhatsUp Gold from IPSwitch**. ** Free Download**