Nithin Nithin - 3 months ago 114
Python Question

How to import data from mongodb to pandas?

I have a large amount of data in a collection in mongodb which I need to analyze. How do i import that data to pandas?

I am new to pandas and numpy.

EDIT:
The mongodb collection contains sensor values tagged with date and time. The sensor values are of float datatype.

Sample Data:

{
"_cls" : "SensorReport",
"_id" : ObjectId("515a963b78f6a035d9fa531b"),
"_types" : [
"SensorReport"
],
"Readings" : [
{
"a" : 0.958069536790466,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:26:35.297Z"),
"b" : 6.296118156595,
"_cls" : "Reading"
},
{
"a" : 0.95574014778624,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:27:09.963Z"),
"b" : 6.29651468650064,
"_cls" : "Reading"
},
{
"a" : 0.953648289182713,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:27:37.545Z"),
"b" : 7.29679823731148,
"_cls" : "Reading"
},
{
"a" : 0.955931884300997,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:28:21.369Z"),
"b" : 6.29642922525632,
"_cls" : "Reading"
},
{
"a" : 0.95821381,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:41:20.801Z"),
"b" : 7.28956613,
"_cls" : "Reading"
},
{
"a" : 4.95821335,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:41:36.931Z"),
"b" : 6.28956574,
"_cls" : "Reading"
},
{
"a" : 9.95821341,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:42:09.971Z"),
"b" : 0.28956488,
"_cls" : "Reading"
},
{
"a" : 1.95667927,
"_types" : [
"Reading"
],
"ReadingUpdatedDate" : ISODate("2013-04-02T08:43:55.463Z"),
"b" : 0.29115237,
"_cls" : "Reading"
}
],
"latestReportTime" : ISODate("2013-04-02T08:43:55.463Z"),
"sensorName" : "56847890-0",
"reportCount" : 8
}

Answer

pymongo might give you a hand, followings are some codes I'm using:

import pandas as pd
from pymongo import MongoClient


def _connect_mongo(host, port, username, password, db):
    """ A util for making a connection to mongo """

    if username and password:
        mongo_uri = 'mongodb://%s:%s@%s:%s/%s' % (username, password, host, port, db)
        conn = MongoClient(mongo_uri)
    else:
        conn = MongoClient(host, port)


    return conn[db]


def read_mongo(db, collection, query={}, host='localhost', port=27017, username=None, password=None, no_id=True):
    """ Read from Mongo and Store into DataFrame """

    # Connect to MongoDB
    db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)

    # Make a query to the specific DB and Collection
    cursor = db[collection].find(query)

    # Expand the cursor and construct the DataFrame
    df =  pd.DataFrame(list(cursor))

    # Delete the _id
    if no_id:
        del df['_id']

    return df