Im trying to load a .parquet file into a MemSQL Database with Spark and MemSQL Connector.
package com.memsql.spark
import com.memsql.spark.context._
import org.apache.spark._
import org.apache.spark.sql._
import org.apache.spark.sql.types._
import com.memsql.spark.connector._
import com.mysql.jdbc._
object readParquet {
def main(args: Array[String]){
val conf = new SparkConf().setAppName("ReadParquet")
val sc = new SparkContext(conf)
sc.addJar("/data/applications/spark-1.5.1-bin-hadoop2.6/lib/mysql-connector-java-5.1.37-bin.jar")
sc.addJar("/data/applications/spark-1.5.1-bin-hadoop2.6/lib/memsql-connector_2.10-1.1.0.jar")
Class.forName("com.mysql.jdbc.Driver")
val host = "xxxx"
val port = 3306
val dbName = "WP1"
val user = "root"
val password = ""
val tableName = "rt_acc"
val memsqlContext = new com.memsql.spark.context.MemSQLContext(sc, host, port, user, password)
val rt_acc = memsqlContext.read.parquet("tachyon://localhost:19998/rt_acc.parquet")
val func_rt_acc = new com.memsql.spark.connector.DataFrameFunctions(rt_acc)
func_rt_acc.saveToMemSQL(dbName, tableName, host, port, user, password)
}
}
Try using createMemSQLTableAs
instead of saveToMemSQL
.
saveToMemSQL
loads a dataframe into an existing table, where as createMemSQLTableAs
creates the table and then loads it.
It also returns a handy dataframe wrapping that MemSQL table :).