ML_Passion ML_Passion - 1 year ago 319
Python Question

java.lang.OutOfMemoryError: Unable to acquire 100 bytes of memory, got 0

I'm invoking Pyspark with Spark 2.0 in local mode with the following command:

pyspark --executor-memory 4g --driver-memory 4g


The input dataframe is being read from a tsv file and has 580 K x 28 columns. I'm doing a few operation on the dataframe and then i am trying to export it to a tsv file and i am getting this error.

df.coalesce(1).write.save("sample.tsv",format = "csv",header = 'true', delimiter = '\t')


Any pointers how to get rid of this error. I can easily display the df or count the rows.

The output dataframe is 3100 rows with 23 columns

Error:

Job aborted due to stage failure: Task 0 in stage 70.0 failed 1 times, most recent failure: Lost task 0.0 in stage 70.0 (TID 1073, localhost): org.apache.spark.SparkException: Task failed while writing rows
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:261)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.OutOfMemoryError: Unable to acquire 100 bytes of memory, got 0
at org.apache.spark.memory.MemoryConsumer.allocatePage(MemoryConsumer.java:129)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPageIfNecessary(UnsafeExternalSorter.java:374)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.insertRecord(UnsafeExternalSorter.java:396)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.insertRow(UnsafeExternalRowSorter.java:94)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.sort_addToSorter$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
at org.apache.spark.sql.execution.WindowExec$$anonfun$15$$anon$1.fetchNextRow(WindowExec.scala:300)
at org.apache.spark.sql.execution.WindowExec$$anonfun$15$$anon$1.<init>(WindowExec.scala:309)
at org.apache.spark.sql.execution.WindowExec$$anonfun$15.apply(WindowExec.scala:289)
at org.apache.spark.sql.execution.WindowExec$$anonfun$15.apply(WindowExec.scala:288)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:766)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:766)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:96)
at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:95)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply$mcV$sp(WriterContainer.scala:253)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply(WriterContainer.scala:252)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply(WriterContainer.scala:252)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1325)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:258)
... 8 more

Driver stacktrace:

Answer Source

The problem for me was indeed coalesce(). What I did was exporting the file not using coalesce() but parquet instead using df.write.parquet("testP"). Then read back the file and export that with coalesce(1).

Hopefully it works for you as well.