DataSwede DataSwede - 3 months ago 31
Python Question

Max and Min date in pandas groupby

I have a dataframe that looks like:

data = {'index': ['2014-06-22 10:46:00', '2014-06-24 19:52:00', '2014-06-25 17:02:00', '2014-06-25 17:55:00', '2014-07-02 11:36:00', '2014-07-06 12:40:00', '2014-07-05 12:46:00', '2014-07-27 15:12:00'],
'type': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'C'],
'sum_col': [1, 2, 3, 1, 1, 3, 2, 1]}
df = pd.DataFrame(data, columns=['index', 'type', 'sum_col'])
df['index'] = pd.to_datetime(df['index'])
df = df.set_index('index')
df['weekofyear'] = df.index.weekofyear
df['date'] = df.index.date
df['date'] = pd.to_datetime(df['date'])



type sum_col weekofyear date
index
2014-06-22 10:46:00 A 1 25 2014-06-22
2014-06-24 19:52:00 B 2 26 2014-06-24
2014-06-25 17:02:00 C 3 26 2014-06-25
2014-06-25 17:55:00 A 1 26 2014-06-25
2014-07-02 11:36:00 B 1 27 2014-07-02
2014-07-06 12:40:00 C 3 27 2014-07-06
2014-07-05 12:46:00 A 2 27 2014-07-05
2014-07-27 15:12:00 C 1 30 2014-07-27


I'm looking to groupby the weekofyear, then sum up the sum_col. In addition, I need to find the earliest, and the latest date for the week. The first part is pretty easy:

gb = df.groupby(['type', 'weekofyear'])
gb['sum_col'].agg({'sum_col' : np.sum})


I've tried to find the min/max date with this, but haven't been successful:

gb = df.groupby(['type', 'weekofyear'])
gb.agg({'sum_col' : np.sum,
'date' : np.min,
'date' : np.max})


How would one find the earliest/latest date that appears?

Answer

You need to combine the functions that apply to the same column, like this:

In [116]: gb.agg({'sum_col' : np.sum,
     ...:         'date' : [np.min, np.max]})
Out[116]: 
                      date             sum_col
                      amin       amax      sum
type weekofyear                               
A    25         2014-06-22 2014-06-22        1
     26         2014-06-25 2014-06-25        1
     27         2014-07-05 2014-07-05        2
B    26         2014-06-24 2014-06-24        2
     27         2014-07-02 2014-07-02        1
C    26         2014-06-25 2014-06-25        3
     27         2014-07-06 2014-07-06        3
     30         2014-07-27 2014-07-27        1