Kerrin631 Kerrin631 - 1 month ago 18
Javascript Question

d3 Sunburst reduce parent node inner and outer radius on click

I am trying to reduce the size of the parent level inner and outer radius' when I click on one of its children nodes. You can view my current diagram here: https://jsfiddle.net/2heLd2b1/. As you can see, when a child node is clicked and the distorts to display the selected node and its path, the parent layers take up too much space. I am looking for any suggestions as to how I could reduce or shrink the parent nodes width.

ar width = 960,
height = 750,
radius = (Math.min(width, height) / 2) - 10;

var color = d3.scale.category20c();

var x = d3.scale.linear()
.range([0, 2 * Math.PI]);

var y = d3.scale.linear()
.range([0, radius]);

function percent(d) {
var percentage = (d.value / 956129) * 100;
return percentage.toFixed(2);
}

// var tip = d3.tip()
// .attr('class', 'd3-tip')
// .offset([-10, 0])
// .html(function(d) {
// return "<strong>" + d.name + "</strong> <span style='color:red'>" + percent(d) + "%</span>";
// })

var partition = d3.layout.partition()
// .value(function(d) { return d.size; });
.value(function(d) { return 1; });

var arc = d3.svg.arc()
.startAngle(function(d) { return Math.max(0, Math.min(2 * Math.PI, x(d.x))); })
.endAngle(function(d) { return Math.max(0, Math.min(2 * Math.PI, x(d.x + d.dx))); })
.innerRadius(function(d) { return Math.max(0, y(d.y)) })
.outerRadius(function(d) { return Math.max(0, y(d.y + d.dy)) })
.cornerRadius(function(d) { return 5;});


var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height", height)
.append("g")
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")")
.append("g")
.classed("inner", true);

// svg.call(tip);

d3.json("flare.json", function(error, root) {
if (error) throw error;

var g = svg.selectAll("g")
.data(partition.nodes(root))
.enter().append("g");

path = g.append("path")
.attr("d", arc)
.attr('stroke', 'white')
.attr("fill", function(d) { return color((d.children ? d : d.parent).name); })
.on("click", magnify)
// .on('mouseover', tip.show)
// .on('mouseout', tip.hide)
.each(stash);

var text = g.append("text")
.attr("x", function(d) { return d.x; })
.attr("dx", "6") // margin
.attr("dy", ".35em") // vertical-align
.text(function(d) {
return d.name;
})
.attr('font-size', function(d) {
return '10px';
})
.attr("text-anchor", "middle")
.attr("transform", function(d) {
if (d.depth > 0) {
return "translate(" + arc.centroid(d) + ")" +
"rotate(" + getStartAngle(d) + ")";
} else {
return null;
}
})
.on("click", magnify);

var innerG = d3.selectAll("g.inner");



// Distort the specified node to 80% of its parent.
function magnify(node) {

// get and store parent sequence
var parentSequence = getAncestors(node)

text.transition().attr("opacity", 0);
spin(node);

// check if node has a parent. If so, iterate throught parentSequence and update the size of each node in the sequence
if (node.parent) {
for (var p = 0; p < parentSequence.length; p++) {
if (parent = parentSequence[p].parent) {
var parent,
x = parent.x,
k = 0.95;
parent.children.forEach(function(sibling) {
x += reposition(sibling, x, sibling === parentSequence[p]
? parent.dx * k / parentSequence[p].value
: parent.dx * (1 - k) / (parent.value - parentSequence[p].value));
});
} else {
reposition(parentSequence[p], 0, parentSequence[p].dx / parentSequence[p].value);
}
}
// if node does not have parent (center node) reset all values to original
} else {
if (parent = node.parent) {
var parent,
x = parent.x,
k = 0.95;
parent.children.forEach(function(sibling) {
x += reposition(sibling, x, sibling === node
? parent.dx * k / node.value
: parent.dx * (1 - k) / (parent.value - node.value));
});
} else {
reposition(node, 0, node.dx / node.value);
}
}

path.transition()
.duration(750)
.attrTween("d", arcTween)
.each("end", function(e, i) {

// check if the animated element's data e lies within the visible angle span given in node
if (e.x >= node.x && e.x < (node.x + node.dx)) {
// get a selection of the associated text element
var arcText = d3.select(this.parentNode).select("text");
// fade in the text element and recalculate positions
arcText.transition().duration(750)
.attr("opacity", 1)
.attr("x", function(d) {
return d.x;
})
.attr("transform", function(d) {
if (d.depth > 0) {
return "translate(" + arc.centroid(d) + ")" +
"rotate(" + getNewAngle(d) + ")";
} else {
return null;
}
});
}
});
}

function spin(d) {
var spin1 = new Promise (function(resolve, reject) {
var newAngle = - x(d.x + d.dx / 2);
// console.log('newAngle', newAngle)

innerG
.transition()
.duration(1500)
.attr("transform", "rotate(" + ((180 / Math.PI * newAngle)) + ")");
resolve("Success!");
});

spin1.then(function() {
var newerAngle = - x(d.x + d.dx / 2);
// console.log('newerAngle', newerAngle)

innerG
.transition()
.duration(1500)
.attr("transform", "rotate(" + ((180 / Math.PI * newerAngle)) + ")");
})

path
.classed("selected", function (x) { return d.name == x.name; });
}

// Recursively reposition the node at position x with scale k.
function reposition(node, x, k) {
// console.log(k)
node.x = x;
if (node.children && (n = node.children.length)) {
var i = -1, n;
while (++i < n) x += reposition(node.children[i], x, k);
}
return node.dx = node.value * k;
}

// Stash the old values for transition.
function stash(d) {
d.x0 = d.x;
d.dx0 = d.dx;
}

// Interpolate the arcs in data space.
function arcTween(a) {
var i = d3.interpolate({x: a.x0, dx: a.dx0}, a);
return function(t) {
var b = i(t);
a.x0 = b.x;
a.dx0 = b.dx;
return arc(b);
};
};
});

function getStartAngle(d) {
// Offset the angle by 90 deg since the '0' degree axis for arc is Y axis, while
// for text it is the X axis.
var thetaDeg = (180 / Math.PI * (arc.startAngle()(d) + arc.endAngle()(d)) / 2 - 90);
// If we are rotating the text by more than 90 deg, then "flip" it.
// This is why "text-anchor", "middle" is important, otherwise, this "flip" would
// a little harder.
return (thetaDeg > 90) ? thetaDeg - 180 : thetaDeg;
}

function getNewAngle(d) {
var thetaDeg = (180 / Math.PI * (arc.startAngle()(d) + arc.endAngle()(d)) / 2 - 90);
return (thetaDeg < 90) ? thetaDeg - 180 : thetaDeg;
}

function getAncestors(node) {
var path = [];
var current = node;
while (current.parent) {
path.unshift(current);
current = current.parent;
}
return path;
}

Answer

I managed to figure it out by combining the tween methods from my original jsFiddle link, https://jsfiddle.net/2heLd2b1/, with the traditional tween used by a zoomable sunburst.You can see the implementation here: https://jsfiddle.net/6e4y0s11/

I altered my innerRadius and outerRadius from:

var arc = d3.svg.arc()
    .startAngle(function(d) { return Math.max(0, Math.min(2 * Math.PI, x(d.x))); })
    .endAngle(function(d) { return Math.max(0, Math.min(2 * Math.PI, x(d.x + d.dx))); })
    .innerRadius(function(d) { return Math.max(0, y(d.y)) })
    .outerRadius(function(d) { return Math.max(0, y(d.y + d.dy)) })
    .cornerRadius(function(d) { return 5;});

to:

var arc = d3.svg.arc()
    .startAngle(function(d) { return Math.max(0, Math.min(2 * Math.PI, x(d.x))); })
    .endAngle(function(d) { return Math.max(0, Math.min(2 * Math.PI, x(d.x + d.dx))); })
    .innerRadius(function(d) { return Math.max(d.depth * 20, y(d.y)) })
    .outerRadius(function(d) { return Math.max(100, y(d.y + d.dy)) })
    .cornerRadius(function(d) { return 5;});

I also added:

function arcTweenZoom(d) {
    var yd = d3.interpolate(y.domain(), [d.y, 1]),
        yr = d3.interpolate(y.range(), [d.y ? 20 : 0, radius]);
  return function(d, i) {
    return i
        ? function(t) { return arc(d); }
        : function(t) {
            y.domain(yd(t)).range(yr(t));
            return arc(d);

        };
  };
}

so that I could interpolate the scales. The final result allows the inner parent level nodes to shrink without actually disappearing. The maintain a minimum radius based on their d.y values.