flau - 9 months ago 59

C++ Question

I'm trying to implement Oren-Nayar lighting in the fragment shader as shown here.

However, I'm getting some strange lighting effects on the terrain as shown below.

I am currently sending the shader the 'view direction' uniform as the camera's 'front' vector. I am not sure if this is correct, as moving the camera around changes the artifacts.

Multiplying the 'front' vector by the MVP matrix gives a better result, but the artifacts are still very noticable when viewing the terrain from some angles. It is particularly noticable in dark areas and around the edges of the screen.

What could be causing this effect?

**Artifact example**

**How the scene should look**

**Vertex Shader**

`#version 450`

layout(location = 0) in vec3 position;

layout(location = 1) in vec3 normal;

out VS_OUT {

vec3 normal;

} vert_out;

void main() {

vert_out.normal = normal;

gl_Position = vec4(position, 1.0);

}

`#version 450`

layout(vertices = 3) out;

in VS_OUT {

vec3 normal;

} tesc_in[];

out TESC_OUT {

vec3 normal;

} tesc_out[];

void main() {

if(gl_InvocationID == 0) {

gl_TessLevelInner[0] = 1.0;

gl_TessLevelInner[1] = 1.0;

gl_TessLevelOuter[0] = 1.0;

gl_TessLevelOuter[1] = 1.0;

gl_TessLevelOuter[2] = 1.0;

gl_TessLevelOuter[3] = 1.0;

}

tesc_out[gl_InvocationID].normal = tesc_in[gl_InvocationID].normal;

gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

}

`#version 450`

layout(triangles, equal_spacing) in;

in TESC_OUT {

vec3 normal;

} tesc_in[];

out TESE_OUT {

vec3 normal;

float height;

vec4 shadow_position;

} tesc_out;

uniform mat4 model_view;

uniform mat4 model_view_perspective;

uniform mat3 normal_matrix;

uniform mat4 depth_matrix;

vec3 lerp(vec3 v0, vec3 v1, vec3 v2) {

return (

(vec3(gl_TessCoord.x) * v0) +

(vec3(gl_TessCoord.y) * v1) +

(vec3(gl_TessCoord.z) * v2)

);

}

vec4 lerp(vec4 v0, vec4 v1, vec4 v2) {

return (

(vec4(gl_TessCoord.x) * v0) +

(vec4(gl_TessCoord.y) * v1) +

(vec4(gl_TessCoord.z) * v2)

);

}

void main() {

gl_Position = lerp(

gl_in[0].gl_Position,

gl_in[1].gl_Position,

gl_in[2].gl_Position

);

tesc_out.normal = normal_matrix * lerp(

tesc_in[0].normal,

tesc_in[1].normal,

tesc_in[2].normal

);

tesc_out.height = gl_Position.y;

tesc_out.shadow_position = depth_matrix * gl_Position;

gl_Position = model_view_perspective * gl_Position;

}

`#version 450`

in TESE_OUT {

vec3 normal;

float height;

vec4 shadow_position;

} frag_in;

out vec4 colour;

uniform vec3 view_direction;

uniform vec3 light_position;

#define PI 3.141592653589793

void main() {

const vec3 ambient = vec3(0.1, 0.1, 0.1);

const float roughness = 0.8;

const vec4 water = vec4(0.0, 0.0, 0.8, 1.0);

const vec4 sand = vec4(0.93, 0.87, 0.51, 1.0);

const vec4 grass = vec4(0.0, 0.8, 0.0, 1.0);

const vec4 ground = vec4(0.49, 0.27, 0.08, 1.0);

const vec4 snow = vec4(0.9, 0.9, 0.9, 1.0);

if(frag_in.height == 0.0) {

colour = water;

} else if(frag_in.height < 0.2) {

colour = sand;

} else if(frag_in.height < 0.575) {

colour = grass;

} else if(frag_in.height < 0.8) {

colour = ground;

} else {

colour = snow;

}

vec3 normal = normalize(frag_in.normal);

vec3 view_dir = normalize(view_direction);

vec3 light_dir = normalize(light_position);

float NdotL = dot(normal, light_dir);

float NdotV = dot(normal, view_dir);

float angleVN = acos(NdotV);

float angleLN = acos(NdotL);

float alpha = max(angleVN, angleLN);

float beta = min(angleVN, angleLN);

float gamma = dot(view_dir - normal * dot(view_dir, normal), light_dir - normal * dot(light_dir, normal));

float roughnessSquared = roughness * roughness;

float roughnessSquared9 = (roughnessSquared / (roughnessSquared + 0.09));

// calculate C1, C2 and C3

float C1 = 1.0 - 0.5 * (roughnessSquared / (roughnessSquared + 0.33));

float C2 = 0.45 * roughnessSquared9;

if(gamma >= 0.0) {

C2 *= sin(alpha);

} else {

C2 *= (sin(alpha) - pow((2.0 * beta) / PI, 3.0));

}

float powValue = (4.0 * alpha * beta) / (PI * PI);

float C3 = 0.125 * roughnessSquared9 * powValue * powValue;

// now calculate both main parts of the formula

float A = gamma * C2 * tan(beta);

float B = (1.0 - abs(gamma)) * C3 * tan((alpha + beta) / 2.0);

// put it all together

float L1 = max(0.0, NdotL) * (C1 + A + B);

// also calculate interreflection

float twoBetaPi = 2.0 * beta / PI;

float L2 = 0.17 * max(0.0, NdotL) * (roughnessSquared / (roughnessSquared + 0.13)) * (1.0 - gamma * twoBetaPi * twoBetaPi);

colour = vec4(colour.xyz * (L1 + L2), 1.0);

}

Answer Source

First I've plugged your fragment shader into my renderer with my view/normal/light vectors and it works perfectly. So the problem has to be in the way you calculate those vectors.

Next, you say that you set `view_dir`

to your camera's front vector. I assume that you meant "camera's front vector in the world space" which would be incorrect. Since you calculate the dot products with vectors in the camera space, the `view_dir`

must be in the camera space too. That is `vec3(0,0,1)`

would be an easy way to check that. If it works -- we found your problem.

However, using `(0,0,1)`

for the view direction is not strictly correct when you do perspective projection, because the direction from the fragment to the camera then depends on the location of the fragment on the screen. The correct formula then would be `view_dir = normalize(-pos)`

where `pos`

is the fragment's position in camera space (that is with model-view matrix applied without the projection). Further, this quantity now depends only on the fragment location on the screen, so you can calculate it as:

```
view_dir = normalize(vec3(-(gl_FragCoord.xy - frame_size/2) / (frame_width/2), flen))
```

`flen`

is the focal length of your camera, which you can calculate as `flen = cot(fovx/2)`

.