Joshua - 1 month ago 3
Java Question

# The answer for logarithm of a BigDecimal type is incomplete

The code in Logarithm of a BigDecimal is giving me an error. The methods exp() and intRoot() hasn't been defined, yet the answer is marked up. The comments also confirm that it is incomplete.

I have a series of probabilities p1, p2, p3, p4, and I need to transform each one to a logarithmic scale to make comparisons. This is easy to do with int datatypes, but I am using BigDecimal because I need the precision, and I can't find a way to do it.

Here is the source code for the class that contained the algorithms referenced by Peter's answer to that question. You can download the full Jar that accompanies the book here.

``````package numbercruncher.mathutils;

import java.math.BigInteger;
import java.math.BigDecimal;

/**
* Several useful BigDecimal mathematical functions.
*/
public final class BigFunctions
{
/**
* Compute x^exponent to a given scale.  Uses the same
* algorithm as class numbercruncher.mathutils.IntPower.
* @param x the value x
* @param exponent the exponent value
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal intPower(BigDecimal x, long exponent,
int scale)
{
// If the exponent is negative, compute 1/(x^-exponent).
if (exponent < 0) {
return BigDecimal.valueOf(1)
.divide(intPower(x, -exponent, scale), scale,
BigDecimal.ROUND_HALF_EVEN);
}

BigDecimal power = BigDecimal.valueOf(1);

// Loop to compute value^exponent.
while (exponent > 0) {

// Is the rightmost bit a 1?
if ((exponent & 1) == 1) {
power = power.multiply(x)
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}

// Square x and shift exponent 1 bit to the right.
x = x.multiply(x)
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
exponent >>= 1;

}

return power;
}

/**
* Compute the integral root of x to a given scale, x >= 0.
* Use Newton's algorithm.
* @param x the value of x
* @param index the integral root value
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal intRoot(BigDecimal x, long index,
int scale)
{
// Check that x >= 0.
if (x.signum() < 0) {
throw new IllegalArgumentException("x < 0");
}

int        sp1 = scale + 1;
BigDecimal n   = x;
BigDecimal i   = BigDecimal.valueOf(index);
BigDecimal im1 = BigDecimal.valueOf(index-1);
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
BigDecimal xPrev;

// The initial approximation is x/index.
x = x.divide(i, scale, BigDecimal.ROUND_HALF_EVEN);

// Loop until the approximations converge
// (two successive approximations are equal after rounding).
do {
// x^(index-1)
BigDecimal xToIm1 = intPower(x, index-1, sp1);

// x^index
BigDecimal xToI =
x.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);

// n + (index-1)*(x^index)
BigDecimal numerator =
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);

// (index*(x^(index-1))
BigDecimal denominator =
i.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);

// x = (n + (index-1)*(x^index)) / (index*(x^(index-1)))
xPrev = x;
x = numerator
.divide(denominator, sp1, BigDecimal.ROUND_DOWN);

} while (x.subtract(xPrev).abs().compareTo(tolerance) > 0);

return x;
}

/**
* Compute e^x to a given scale.
* Break x into its whole and fraction parts and
* compute (e^(1 + fraction/whole))^whole using Taylor's formula.
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal exp(BigDecimal x, int scale)
{
// e^0 = 1
if (x.signum() == 0) {
return BigDecimal.valueOf(1);
}

// If x is negative, return 1/(e^-x).
else if (x.signum() == -1) {
return BigDecimal.valueOf(1)
.divide(exp(x.negate(), scale), scale,
BigDecimal.ROUND_HALF_EVEN);
}

// Compute the whole part of x.
BigDecimal xWhole = x.setScale(0, BigDecimal.ROUND_DOWN);

// If there isn't a whole part, compute and return e^x.
if (xWhole.signum() == 0) return expTaylor(x, scale);

// Compute the fraction part of x.
BigDecimal xFraction = x.subtract(xWhole);

// z = 1 + fraction/whole
BigDecimal z = BigDecimal.valueOf(1)
xWhole, scale,
BigDecimal.ROUND_HALF_EVEN));

// t = e^z
BigDecimal t = expTaylor(z, scale);

BigDecimal maxLong = BigDecimal.valueOf(Long.MAX_VALUE);
BigDecimal result  = BigDecimal.valueOf(1);

// Compute and return t^whole using intPower().
// If whole > Long.MAX_VALUE, then first compute products
// of e^Long.MAX_VALUE.
while (xWhole.compareTo(maxLong) >= 0) {
result = result.multiply(
intPower(t, Long.MAX_VALUE, scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
xWhole = xWhole.subtract(maxLong);

}
return result.multiply(intPower(t, xWhole.longValue(), scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}

/**
* Compute e^x to a given scale by the Taylor series.
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
private static BigDecimal expTaylor(BigDecimal x, int scale)
{
BigDecimal factorial = BigDecimal.valueOf(1);
BigDecimal xPower    = x;
BigDecimal sumPrev;

// 1 + x

// Loop until the sums converge
// (two successive sums are equal after rounding).
int i = 2;
do {
// x^i
xPower = xPower.multiply(x)
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);

// i!
factorial = factorial.multiply(BigDecimal.valueOf(i));

// x^i/i!
BigDecimal term = xPower
.divide(factorial, scale,
BigDecimal.ROUND_HALF_EVEN);

// sum = sum + x^i/i!
sumPrev = sum;

++i;
} while (sum.compareTo(sumPrev) != 0);

return sum;
}

/**
* Compute the natural logarithm of x to a given scale, x > 0.
*/
public static BigDecimal ln(BigDecimal x, int scale)
{
// Check that x > 0.
if (x.signum() <= 0) {
throw new IllegalArgumentException("x <= 0");
}

// The number of digits to the left of the decimal point.
int magnitude = x.toString().length() - x.scale() - 1;

if (magnitude < 3) {
return lnNewton(x, scale);
}

// Compute magnitude*ln(x^(1/magnitude)).
else {

// x^(1/magnitude)
BigDecimal root = intRoot(x, magnitude, scale);

// ln(x^(1/magnitude))
BigDecimal lnRoot = lnNewton(root, scale);

// magnitude*ln(x^(1/magnitude))
return BigDecimal.valueOf(magnitude).multiply(lnRoot)
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
}

/**
* Compute the natural logarithm of x to a given scale, x > 0.
* Use Newton's algorithm.
*/
private static BigDecimal lnNewton(BigDecimal x, int scale)
{
int        sp1 = scale + 1;
BigDecimal n   = x;
BigDecimal term;

// Convergence tolerance = 5*(10^-(scale+1))
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);

// Loop until the approximations converge
// (two successive approximations are within the tolerance).
do {

// e^x
BigDecimal eToX = exp(x, sp1);

// (e^x - n)/e^x
term = eToX.subtract(n)
.divide(eToX, sp1, BigDecimal.ROUND_DOWN);

// x - (e^x - n)/e^x
x = x.subtract(term);

} while (term.compareTo(tolerance) > 0);

return x.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}

/**
* Compute the arctangent of x to a given scale, |x| < 1
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal arctan(BigDecimal x, int scale)
{
// Check that |x| < 1.
if (x.abs().compareTo(BigDecimal.valueOf(1)) >= 0) {
throw new IllegalArgumentException("|x| >= 1");
}

// If x is negative, return -arctan(-x).
if (x.signum() == -1) {
return arctan(x.negate(), scale).negate();
}
else {
return arctanTaylor(x, scale);
}
}

/**
* Compute the arctangent of x to a given scale
* by the Taylor series, |x| < 1
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
private static BigDecimal arctanTaylor(BigDecimal x, int scale)
{
int     sp1     = scale + 1;
int     i       = 3;

BigDecimal power = x;
BigDecimal sum   = x;
BigDecimal term;

// Convergence tolerance = 5*(10^-(scale+1))
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);

// Loop until the approximations converge
// (two successive approximations are within the tolerance).
do {
// x^i
power = power.multiply(x).multiply(x)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);

// (x^i)/i
term = power.divide(BigDecimal.valueOf(i), sp1,
BigDecimal.ROUND_HALF_EVEN);

// sum = sum +- (x^i)/i
: sum.subtract(term);

i += 2;

} while (term.compareTo(tolerance) > 0);

return sum;
}

/**
* Compute the square root of x to a given scale, x >= 0.
* Use Newton's algorithm.
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal sqrt(BigDecimal x, int scale)
{
// Check that x >= 0.
if (x.signum() < 0) {
throw new IllegalArgumentException("x < 0");
}

// n = x*(10^(2*scale))
BigInteger n = x.movePointRight(scale << 1).toBigInteger();

// The first approximation is the upper half of n.
int bits = (n.bitLength() + 1) >> 1;
BigInteger ix = n.shiftRight(bits);
BigInteger ixPrev;

// Loop until the approximations converge
// (two successive approximations are equal after rounding).
do {
ixPrev = ix;

// x = (x + n/x)/2