I am currently using Swift to store some data on iOS. The values come as a 2-D integer array, defined as an
[[Int]]
func writeDataToFile(data: [[Int]], filename: String){
let fullfile = NSString(string: self.folderpath).stringByAppendingPathComponent(filename+".txt")
var fh = NSFileHandle(forWritingAtPath: fullfile)
if fh == nil{
NSFileManager.defaultManager().createFileAtPath(fullfile, contents: nil, attributes: nil)
fh = NSFileHandle(forWritingAtPath: fullfile)
}
fh?.writeData("Time: \(filename)\n".dataUsingEncoding(NSUTF16StringEncoding)!)
fh?.writeData("\(data)".dataUsingEncoding(NSUTF16StringEncoding)!)
fh?.closeFile()
}
Since you are currently saving those as string values, the simplest and fastest size reduction would be to save them as binary values (or base64 encoded strings). Then you could convert all of your int values into 2 byte sets (since unsigned 2 bytes can store up to 65536) and save the values that way. That would go from 5 bytes per int value down to 2 bytes per int value. Immediate savings of 60%.
For the Base64 encoding I use something I found on the internet called NSData+Base64. But in looking that up I just read:
In the iOS 7 and Mac OS 10.9 SDKs, Apple introduced new base64 methods on NSData that make it unnecessary to use a 3rd party base 64 decoding library. What's more, they exposed access to private base64 methods that are retrospectively available back as far as IOS 4 and Mac OS 6.
You could go much further into the compression by realizing that data from one element to the next will likely not change by the entire range, since heat maps will always be gradients. Then you could save the arrays as difference since the last element and likely get that down to a single byte (255 value) change set. But that may lose precision if you are viewing something with a very fast heat gradient (or using a low resolution camera).