Fred Foo - 1 year ago 257

Python Question

In Numpy, I can concatenate two arrays end-to-end with

`np.append`

`np.concatenate`

`>>> X = np.array([[1,2,3]])`

>>> Y = np.array([[-1,-2,-3],[4,5,6]])

>>> Z = np.append(X, Y, axis=0)

>>> Z

array([[ 1, 2, 3],

[-1, -2, -3],

[ 4, 5, 6]])

But these make copies of their input arrays:

`>>> Z[0,:] = 0`

>>> Z

array([[ 0, 0, 0],

[-1, -2, -3],

[ 4, 5, 6]])

>>> X

array([[1, 2, 3]])

Is there a way to concatenate two arrays into a

`np.ndarray`

Recommended for you: Get network issues from **WhatsUp Gold**. **Not end users.**

Answer Source

The memory belonging to a Numpy array must be contiguous. If you allocated the arrays separately, they are randomly scattered in memory, and there is no way to represent them as a view Numpy array.

If you know beforehand how many arrays you need, you can instead start with one big array that you allocate beforehand, and have each of the small arrays be a view to the big array (e.g. obtained by slicing).

Recommended from our users: **Dynamic Network Monitoring from WhatsUp Gold from IPSwitch**. ** Free Download**