user3919790 - 11 months ago 38

R Question

I have a question on manipulating data in data.frame.

Essentially I have a large data set - abbreviated version below:

`structure(list(nm_mean = c(194213914.326, 194213914.326, 194213914.326,`

194213914.326, 194213914.326, 217947112.739), nm_se = c(9984735.05918367,

9984735.05918367, 9984735.05918367, 9984735.05918367, 9984735.05918367,

11010386.0760204), alpha = c(193.197697846336, 214.592588477741,

240.246557258741, 258.116959355425, 282.560024775668, 306.610038660465

), beta = c(61526.2664158025, 57950.9563448233, 56085.1512614369,

52919.4794239927, 51483.4591654126, 50405.8186695088)), .Names = c("nm_mean",

"nm_se", "alpha", "beta"), row.names = c(NA, 6L), class = "data.frame")

I want to use rbeta to generate probabilities using the beta distribution and alpha and beta as the parameters

Similarly I want to use rnorm to generate random numbers using the normal distribution with nm_mean and nm_se as the mean and sd.

I then want to multiply the rbeta values generated by the rnorm values and extract the 50th, 25th and 75th quantile back into the dataframe

So as an example for row 1

`x <- rbeta(1000,193.1977,61526.27)`

y <- rnorm(1000,194213914,9984735)

z <- x*y

dat$ce <- quantile(z,0.5)

dat$ll <- quantile(z,0.25)

dat$ul <- quantile(z,0.975)

In essence i get a ce, ll and ul for product of the rbeta and rnorm appended back to the database.

Answer Source

This is vectorized solution based on my conversation with @thelatemail:

```
n <- 1000
grp <- nrow(dat)
z <- with(dat, rnorm(grp*n, nm_mean, nm_se) * rbeta(grp*n, alpha, beta) )
m <- 1
for(i in 1:nrow(dat)){
dat$ce[i] <- quantile(z[m:(i*1000)],0.5)
dat$ll[i] <- quantile(z[m:(i*1000)],0.25)
dat$ul[i] <- quantile(z[m:(i*1000)],0.975)
m <- m + 1000
}
```

A less vectorized solution is:

```
for(i in 1:nrow(dat)){
x <- rbeta(1000, shape1 = dat$alpha[i], shape2 = dat$beta[i])
y <- rnorm(n=1000,dat$nm_mean[i],dat$nm_se[i])
z <- x*y
dat$ce[i] <- quantile(z,0.5)
dat$ll[i] <- quantile(z,0.25)
dat$ul[i] <- quantile(z,0.975)
}
dat
```

`nm_mean nm_se alpha beta ce ll ul 1 194213914 9984735 193.1977 61526.27 607563.9 573229.9 713057.2 2 194213914 9984735 214.5926 57950.96 712268.5 674826.3 836950.8 3 194213914 9984735 240.2466 56085.15 823322.9 777482.8 981156.7 4 194213914 9984735 258.1170 52919.48 937331.2 884945.0 1095876.3 5 194213914 9984735 282.5600 51483.46 1059980.4 1003596.4 1225615.6 6 217947113 11010386 306.6100 50405.82 1316733.1 1250190.1 1515185.0`