George Thompson George Thompson - 2 months ago 16
Python Question

How can I replace all the NaN values with Zero's in a column of a pandas dataframe

I have a dataframe as below

itm Date Amount
67 420 2012-09-30 00:00:00 65211
68 421 2012-09-09 00:00:00 29424
69 421 2012-09-16 00:00:00 29877
70 421 2012-09-23 00:00:00 30990
71 421 2012-09-30 00:00:00 61303
72 485 2012-09-09 00:00:00 71781
73 485 2012-09-16 00:00:00 NaN
74 485 2012-09-23 00:00:00 11072
75 485 2012-09-30 00:00:00 113702
76 489 2012-09-09 00:00:00 64731
77 489 2012-09-16 00:00:00 NaN


when I try to .apply a function to the Amount column I get the following error.

ValueError: cannot convert float NaN to integer


I have tried applying a function using .isnan from the Math Module
I have tried the pandas .replace attribute
I tried the .sparse data attribute from pandas 0.9
I have also tried if NaN == NaN statement in a function.
I have also looked at this article How do I replace NA values with zeros in R? whilst looking at some other articles.
All the methods I have tried have not worked or do not recognise NaN.
Any Hints or solutions would be appreciated.

Answer

I believe DataFrame.fillna() will do this for you.

Link to Docs for a dataframe and for a Series.

Example:

In [7]: df
Out[7]: 
          0         1
0       NaN       NaN
1 -0.494375  0.570994
2       NaN       NaN
3  1.876360 -0.229738
4       NaN       NaN

In [8]: df.fillna(0)
Out[8]: 
          0         1
0  0.000000  0.000000
1 -0.494375  0.570994
2  0.000000  0.000000
3  1.876360 -0.229738
4  0.000000  0.000000

To fill the NaNs in only one column, select just that column. in this case I'm using inplace=True to actually change the contents of df.

In [12]: df[1].fillna(0, inplace=True)
Out[12]: 
0    0.000000
1    0.570994
2    0.000000
3   -0.229738
4    0.000000
Name: 1

In [13]: df
Out[13]: 
          0         1
0       NaN  0.000000
1 -0.494375  0.570994
2       NaN  0.000000
3  1.876360 -0.229738
4       NaN  0.000000